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Zur Startbewegung der elastisch aufgehängten Kreisscheibe

1. Einleitung
Die erstmals von E. T. Whittaker fl] behandelte Aufgabe verlangt die Bestimmung

des Anfangskrümmungsradius der Bahnkurve des Mittelpunkts M einer an
zwei masselosen, elastischen Saiten symmetrisch aufgehängten Kreisscheibe (Abb.)
mit radialsymmetrischer Massenverteilung1), wenn zur Zeit t 0 die eine Saite
durchschnitten wird. I. Paasche [2] stellte fest, dass später noch eine zweite Behandlung

dieser Aufgabe erfolgte [3], die indes zu einem um einen Faktor 2 verschiedenen

Ergebnis fühlte. Er löste dann [2] die Aufgabe selbst nach einem neuen Verfahren
und fand ein Resultat, das nochmals einen anderen Faktor, nämlich 3, aufweist.

Im folgenden wird das Problem in wieder anderer Form, nach der Methode der
sukzessiven Näherungen, gelöst. Das Ergebnis von I. Paasche [2] wird bestätigt,
doch ist der Rechengang physikalisch durchsichtiger und wesentlich kürzer. Die
0. Näherung liefert die Anfangstangente der Bahnkurve, die 1. Näherung die

Anfangskrümmung, beide natürlich exakt trotz des Ausdrucks «Näherung»; weiter
braucht man bei der vorliegenden Fragestellung nicht zu gehen. Das Verfahren kann

Veranschaulichung des Scheiben-Problems mit den wichtigsten Bezeichnungen

1) Die ursprünglich für eine homogene Kreisscheibe gestellte Aufgabe wird hier gleich auf eine

radialsymmetrische verallgemeinert
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an sich im rechtwinkligen KS (x, y) (siehe Fig.) durchgeführt werden, man gelangt
aber noch rascher zum Ziel in dem schiefwinkligen KS (v, w), dessen Achsen zu den
gespannten Saiten des Ausgangszustandes parallel sind. Zweckmässig führt man für
die Punkte M und P zwei getrennte KS mit parallelen Achsen ein (siehe Fig.).

2. Bezeichnungen

Die aus dem Bild ersichtlichen Bezeichnungen werden nicht mehr wiederholt.
u ist die Länge der ungespannten Saiten, die die Federkonstante k haben, g
Schwerefeldstärke, m Masse der Scheibe, / mq2 Trägheitsmoment um die Mittelpunktsachse,

q Trägheitsradius. Die Kräfte und die Verschiebungen der Punkte M bzw. P
der Scheibe in 0. Ordnung werden mit F, v, w, die Zusatzkräfte und Zusatzverschiebungen,

die in 1. Ordnung hinzukommen, mit F', v', w' bezeichnet, wobei die Indizes
M und P die Zugehörigkeit zu den Punkten angeben. Die Kräfte werden in ihre
Komponenten Fv und Fw im KS (v, w) zerlegt. Wegen ihres häufigen Auftretens
werden für die folgenden Ausdrücke Abkürzungen eingeführt:

sina s, cosa c, sin2a s2, cos2a c2, sin4a s4

3. Durchführung der sukzessiven Näherung

Die Anfangs-Spannung in jeder der beiden Saiten ist k(f — u). Das ursprüngliche
Gleichgewicht erfordert also:

mg
~2T k(f"~u)' W

was aber weiterhin nicht mehr gebraucht wird. Da im Gleichgewicht nämlich die
Resultierende der 3 Kräfte Null ist, wird, wenn im Augenblick t 0 die Saite rechts
durchschnitten wird, die neue Resultierende der 2 verbleibenden Kräfte einfach
gleich der wegfallenden Kraft der rechten Saite in entgegengesetzter Richtung. Es
wirkt für t 0 daher auf die Scheibe

\FV £(/-«)die Kraft: { _.

das Drehmoment: M rsFv
(um M; Hebelarm rs).

(2)

Diese Kräfte werden in 0. Näherung als konstant betrachtet. Sie führen zu Verschiebungen

vM, wM des Punktes M und zu einer Drehung D, alle proportional t2. Die
hieraus sich ergebenden Verschiebungen vP, wP des Punktes P bewirken durch Rich-
tungs- und Längenänderung der linken Saite in 1. Näherung Zusatzkräfte F', F„
ebenfalls proportional t2. Das ausserdem entstehende Zusatzdrehmoment M' braucht
nicht mehr berechnet zu werden, da für das Endresultat nur die Bewegung des

Scheibenmittelpunkts interessiert. Aus F^,F^ ergeben sich die ZusatzveiSchiebungen
1. Ordnung v'M, w'M, proportional t*. Von ihnen braucht man nur w'M, weil v'M gegen
vM in der Grenze t —> 0 verschwindet, während wegen wM 0 [siehe (3)] das
^-proportionale w'M das niedrigste Glied ist.
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Aus (2) kommt nach den Grundgesetzen der Dynamik:

vM= \-Um(f-u)t2 Cvt2
_ m

wu 0 (d.h. Bahntangente in M0 ist die vM-Achse)

1 rs mrs _ rs „D _ —kV-u) t2 — cvt2 ^ CJ2.
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(3)

Aus vM und D folgen vP und _>P, hieraus die Zusatzkraft FJ, ~ 22 (Fv' braucht
man nicht), und aus ihr die Zusatzverschiebung

WM F'dt dt CJK (4)

Die gesamten zu berücksichtigenden Verschiebungen des Scheibenmittelpunktes
sind nun vu nach (3) und, wegen wM 0, w'M nach (4). Elimination von t ergibt aus
ihnen die Näherungsparabel der Bahnkurve im Ursprung

r
w —2 v2

mit ihrem Nullpunkts-Krümmungsradius

R
2CWS2

(positiv bei Krümmung wie in der Figur)

(5)

(6)

Der Faktor s2 im Nenner rührt vom schiefwinkligen KS her. Die einzige etwas
umständlichere Rechnung ist nun nur noch die Ermittlung der Grösse Cm aus (4). Das

C„ ist in der ersten der Gleichungen (3) definiert. In der Tatsache, dass wM Null wird
und dass man dadurch sofort die Gleichung (5) der Näherungsparabel erhält, liegt
der Vorteil des schiefwinkligen KS.

4. Berechnung von Cw

Die Verschiebung 0. Ordnung des Punktes P setzt sich aus der Verschiebung vM

des Punktes M und einer von der Drehung D herrührenden horizontalen Verschiebung

um rD zusammen, deren Komponenten nach v und w rD/2s und —rD/2s
sind. Mit vM und D nach (3) ergibt sich daher die Verschiebung von P zu:

(Abkürzung oc r2/2q2)

vP=vM y + -^J (i + *)«_

2e2
vM= -avh

(7)
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Bezeichnet Af die Verlängerung, Aa die Richtungsänderung (Zunahme des
Winkels a) der Saite infolge der Verschiebung 0. Ordnung des Punktes P, so ist:

Af =c2vp+wp= [c2 - a (1 - c2)] vM (c2 - 2as2) vM

sQ v» s2 (1 + OL)

Aa= — °2"P
/ /

(8)

Die Längenänderung der Saite bewirkt eine reine w-Zusatzkraft der Grösse
— kAf, die Richtungsänderung dagegen eine Zusatzkraft der Grösse k (f — u)Aa
senkrecht zur Saite, die man erst in ihre v- und w-Komponenten zerlegen muss. Die
gesamte w-Komponente aus beiden Ursachen wird dann:

i£ - k Af + k(f- u) Aatg(2a-n/2)

-kAf-k(f-u)—Aa
(9)

und mit (8):

K vm k f — u
-c2 + 2as2 + —— c2(l + oc)

vMk
u

oc — — c2 (1 + a) (wegen c2

Cvk
u

<*¦ — -, c2 (1 + a) t2.

(10)

Die zweimalige Integration nach t gemäss (4) liefert

"M
3k
12 m

a — — c2 (1 + oc) fi^Qjy (ii)

und nach (6) kommt unter Berücksichtigung von (2) das Endergebnis:

R 3(f-u) a.s2—-s2c2(l + <x.)

as2-—s4(l + a)

f'\

3(/-M)

Speziell für die homogene Kreisscheibe folgt mit a 1

Rh=3(f-u)

in Übereinstimmung mit dem Resultat von I. Paasche [2].

(12)

(13)

5. Der Fall des Massenpunkts

Da in (13) überraschenderweise ausser g, m und k (diese stecken implizit in
(/ — u)) auch der Scheibenradius r nicht mehr vorkommt, könnte man denken, (13)
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gelte auch für den Fall, dass die Scheibe durch einen Massenpunkt ersetzt wird. Dies
ist indes nicht richtig. Der Grenzübergang r -» 0 ist nicht erlaubt, weil bei ihm bei D
nach (3) (r/q ginge gegen 1) schon in 0. Ordnung ein unendlich grosser Koeffizient
von t2 entstünde. Man kann auch sagen: Der Konvergenzbereich der Methode in t
würde für r -> 0 auf Null zusammenschrumpfen. Man kann jedoch das Ergebnis für
den Massenpunkt durch einen einfachen Kunstgriff erhalten: Man unterbindet die
für den Massenpunkt sinnlose Drehung durch ein bei verschwindendem r endlich
bleibendes Trägheitsmoment, also durch a 0. Dies in (12) eingesetzt, liefert sofort
für den Massenpunkt:

Ä3#... -6~- (/-«)• (14)
S4M

6. Der Fall der starren Saiten

Sind die Aufhängesaiten nicht dehnbar, so ist / u const. Das formale
Ergebnis nach (12) oder (13) wäre R 0, was sicher unrichtig ist. Tatsächlich ist auch
dieser Grenzübergang nicht erlaubt, da er durch k -> oo auszudrücken wäre, wobei
in (3) wieder schon in 0. Ordnung die Koeffizienten von t2 unendlich würden. Während

eben bei elastischen Saiten beim Zerschneiden der rechten Saite die Spannkraft
der linken sich nur allmählich, gemäss ihrer Längenänderung, ändert, wird sie im
Fall der starren Saite, die keine Längenänderung zulasst, schlagartig anders, in
ihrem Betrag erzwungen durch die Zwangsbedingung / const. Es gibt hier nicht
wie im Fall des Massenpunktes einen Kunstgriff, um doch noch ein richtiges Ergebnis
zu gewinnen. Die ganze Rechnung musste vielmehr von vornherein mit Hilfe der
Zwangsbedingung anders geführt werden.

Werner Braunbek, Institut für Theoretische Physik, Universität Tübingen
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The Cubic Revisited

In this note we offer another method for solving the general cubic equation. Our
method amounts to the technique of completing the cube in a transformed equation
by which we arrive at a binomial equation. Our formula is of course not new in every
way, and naturally it can be reconciled with the celebrated one by Cardan (Tartaglia).

The general cubic equation

f(x) ax3+bx2 + cx + d 0, („4=0)


	Zur Startbewegung der elastisch aufgehängten Kreisscheibe

