Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 30 (1975)

Heft: 5

Artikel: Die Vierfach-Spiegelungen an Geraden

Autor: Botsch, Otto

DOI: https://doi.org/10.5169/seals-30653

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der gesuchte Winkel $\alpha = \langle TAS \text{ ergibt sich dann aus tg } \alpha = \overline{ST}/\overline{AS} = y_2 z_1/x_1$, also mit Rücksicht auf (6) aus

$$tg \alpha = \frac{th a}{sh b}. \tag{15}$$

Unter Hinzunahme der analogen Formel tg $\beta = \text{th } b/\text{sh } a$ können dann alle übrigen Relationen im rechtwinkligen Dreieck ABC gefolgert werden. Sie lassen sich bekanntlich in einer modifizierten «Neperschen Regel» zusammenfassen [3].

W. Wunderlich, Technische Hochschule Wien

LITERATURVERZEICHNIS

- [1] R. Baldus-F. Löbell: Nichteuklidische Geometrie (Sammlg. Göschen, Bd. 970/970a). 4. Aufl. (Berlin 1964).
- [2] F. KLEIN-H. ROSEMANN: Vorlesungen über nichteuklidische Geometrie (Grundlehren d. math. Wiss., Bd. 28). (Berlin), 3. Aufl. 1928, Nachdruck 1968.
- [3] H. Meschkowski: Nichteuklidische Geometrie. 4. Aufl. (Braunschweig 1971). Siehe auch: Die Ableitung der trigonometrischen Formeln im Poincaréschen Modell der hyperbolischen Geometrie. El. Math. 7, 130–132 (1952).
- [4] H. Zeitler: Hyperbolische Geometrie (Beiträge f. d. math. Unterr., Bd. 3). (München 1970).

Die Vierfach-Spiegelungen an Geraden

Das Produkt von vier Spiegelungen an Geraden der Ebene ergibt bekanntlich entweder eine Translation τ oder eine Rotation ϱ (vgl. [1] S. 41). Anstelle der üblichen, stark aufgesplitterten Fall-Untersuchung zum Nachweis vorstehender Behauptung werden wir im Folgenden eine allgemeine Beweisführung bringen.

Es werde vorausgeschickt, dass der gerichtete Winkel $\omega(a,b)$ zwischen zwei Geraden a,b modulo 180° zu verstehen ist und dass Vertauschung der Geraden Umkehr des Vorzeichens bedingt:

$$\omega(a,b) = -\omega(b,a). \tag{1}$$

Einander schneidende Geraden bilden von Null verschiedene Winkel. Will man daher von einem Winkel zwischen zwei Parallelen sprechen, so hat man diesem die Grösse 0° mod 180° beizulegen. In Ergänzung von (9) [1] gelten daher die Äquivalenzen:

$$a \parallel b \iff \sigma_a \cdot \sigma_b = \tau \iff \omega(a, b) = 0^\circ \mod 180^\circ$$
 (2)

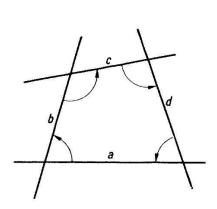
Für vier Geraden a, b, c, d eines Büschels gilt:

$$\omega(a,b) + \omega(b,c) + \omega(c,d) + \omega(d,a) = 0^{\circ} \mod 180^{\circ}.$$
(3)

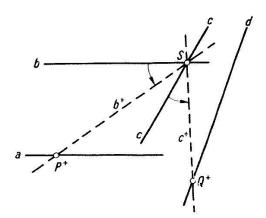
Verschiebt man eine oder einige der Geraden parallel zu sich, so entsteht ein Vierseit, für dessen Winkel (wegen der Winkelsätze für Parallelen) ebenfalls Gleichung (3) gilt (Fig. 1).

Unser Beweisgang schliesst unmittelbar an Fig. 2 von [1] an. Ist kein Schnittpunkt P von a,b vorhanden, wohl aber ein Schnittpunkt S von b,c, so kann man in weitem Belieben zwei neue Geraden b^+,c^+ des Büschels S derart wählen, dass sie a bzw. a in Punkten a0 bzw. a1 von a2 bzw. a3 von a4 in Punkten a5 bzw. a6 von a6 bzw. a6 von a7 bzw. a8 von a9 bzw. a9 bzw. a9 bzw. a9 von a9 bzw. a9 bzw.

$$\omega(\overrightarrow{b^+}, \overrightarrow{c^+}) = \omega(\overrightarrow{b}, \overrightarrow{c}).$$
 (Fig. 2)



Figur 1



Figur 2

Für die neue Konfiguration a, b^+, c^+, d gilt nach (14), (15) [1]:

$$\beta = \sigma_a \cdot \sigma_{b^+} \cdot \sigma_{c^+} \cdot \sigma_d = \sigma_{a'} \cdot \sigma_{d'} \tag{4}$$

und wegen $\sigma_{b^+} \cdot \sigma_{c^+} = \sigma_b \cdot \sigma_c$:

$$\beta = \sigma_a \cdot \sigma_{b^+} \cdot \sigma_{c^+} \cdot \sigma_d = \sigma_a \cdot \sigma_b \cdot \sigma_c \cdot \sigma_d = \sigma_{a'} \cdot \sigma_{d'} . \tag{4'}$$

Nennt man die Ersatz-Achsen a', d' neutraler j, k, so gilt daher:

$$\beta = \sigma_a \cdot \sigma_b \cdot \sigma_c \cdot \sigma_d = \sigma_j \cdot \sigma_k \quad \text{mit:} \quad \omega(j,k) = \omega(a,b) + \omega(c,d) . \tag{5}$$

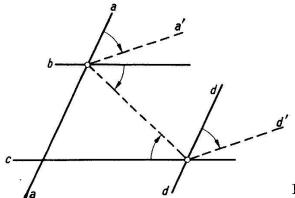
Die Gleichung (5) gilt nicht nur für den in [1] betrachteten Sonderfall, dass ein Schnittpunkt P von a, b vorhanden ist. Der Beweisgang kann durch Einschalten von Hilfsgeraden sinngemäss in allen Fällen durchgeführt werden, wenn wenigstens ein Schnittpunkt benachbarter Geradenpaare (a, b), (b, c) oder (c, d) vorhanden ist.

Dagegen versagt der Beweis, falls alle vier Geraden zueinander parallel sind: $a \parallel b \parallel c \parallel d$. Dann gibt es aber nach [1], (13) eine Achse $x \parallel d$ mit $\sigma_a \cdot \sigma_b = \sigma_x \cdot \sigma_c$ oder: $\sigma_a \cdot \sigma_b \cdot \sigma_c = \sigma_x$ daher: $\sigma_a \cdot \sigma_b \cdot \sigma_c \cdot \sigma_d = \sigma_x \cdot \sigma_d = \tau$ und wegen $\omega(a, b) = \omega(c, d)$ \rightarrow $\omega(x, d) = 0^\circ \mod 180^\circ$ ebenfalls Gültigkeit der Gleichung (5).

Die Frage, in welchen Fällen eine Vierfach-Spiegelung keine Rotation, sondern eine Translation darstellt, wird nach Gleichung (5) sehr einfach beantwortet:

a) Sind die beiden ersten und die beiden letzten Geraden parallel d.h. $\omega(a,b)$ $\rightarrow \omega(c,d) = 0^{\circ} \mod 180^{\circ}$ so folgt dies nach (5) auch für $\omega(j,k)$. Es handelt sich um den bekannten Fall der Komposition zweier Translationen.

b) Sind die beiden äusseren und die beiden inneren Geraden parallel, so folgt \rightarrow aus $\omega(b,c) = \omega(d,a) = 0^{\circ} \mod 180^{\circ}$ nach (3): $\omega(a,b) + \omega(c,d) = 0^{\circ} \mod 180^{\circ}$ (Fig. 3).



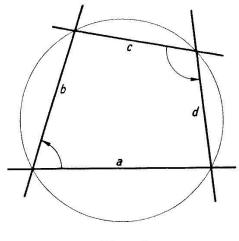
Figur 3

Dabei ist $\beta = \sigma_a \cdot \sigma_b \cdot \sigma_c \cdot \sigma_d$ nichts anderes als die an a gespiegelte, durch a) erwiesene Translation $\tau = \sigma_b \cdot \sigma_c \cdot \sigma_d \cdot \sigma_a$, nämlich $\beta = \sigma_a \cdot \tau \cdot \sigma_a$.

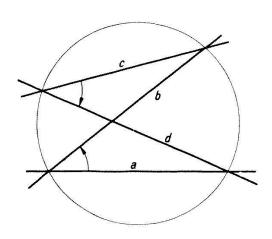
c) Sind die Summen der Winkel zwischen den beiden ersten und den beiden letzten Geraden 0° mod 180°, so folgt dies nach (3) nicht nur auch für die Summen der Winkel zwischen den äusseren und den inneren Geraden, sondern unmittelbar für

$$\overrightarrow{\omega(j,k)} = \overrightarrow{\omega(a,b)} + \overrightarrow{\omega(c,d)} = \overrightarrow{\omega(b,c)} + \overrightarrow{\omega(d,a)} = 0^{\circ} \mod 180^{\circ}.$$

Als Sonderfall von c) ergibt sich die bekannte Komposition von zwei Punktspiegelungen mit ω (a, b) = ω (c, d) = 90° mod 180°. Allgemein enthält c) den unseres Wissens noch unbekannten



Figur 4



Figur 5

Satz: Bilden die vier Achsen von Spiegelungen ein Sehnen-Viereck, so ist das Vierfach-Produkt der Spiegelungen eine Translation.

Otto Botsch, Heidelberg

LITERATURVERZEICHNIS

[1] O. Botsch, Ein reduziertes Erzeugenden-System der Kongruenzgruppe in der Ebene, El. Math. 29, 39 (1974).