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Elementarmathematik und Didaktik
Elementarer Zugang zur hyperbolischen Geometrie

Moderne Lehrpläne enthalten gelegentlich die Anregung, im Rahmen des

Mathematikunterrichts an höheren Schulen in den Abschlussklassen auch auf die
Gedankenwelt der nichteuklidischen Geometrien einzugehen. Wenngleich dies für
das Gros der Schüler wohl als Hochstapelei anzusehen wäre, mag es in interessierten
Arbeitsgemeinschaften nicht ganz aussichtslos sein, wenigstens eine Ahnung der
Ideen zu vermitteln. Es erhebt sich dabei allerdings die Frage, wie man ohne
ausreichende Vorkenntnisse aus projektiver Geometrie einen möglichst elementaren
Zugang finden kann1).

Rein axiomatische Entwicklungen scheiden als zu schwierig und unanschaulich
zweifellos von vornherein aus, obwohl die Stellung des euklidischen Parallelenpostulats

natürlich einführend grob skizziert werden muss. Anschliessend wird man sich
aber auf das Operieren in geeigneten Modellen nichteuklidischer Ebenen konzentrieren

dürfen, um die von der euklidischen Ebene abweichenden Phänomene
hervorzuheben. ¦

Für die elliptische Ebene bietet sich hier zwanglos das geläufige Kugelmodell an,
bei welchem die Grosskreise einer euklidischen Kugel Q als «Geraden» und die
Antipodenpaare von Q als «Punkte» angesprochen werden. Irgendzwei «Geraden» haben
stets einen «Punkt» gemeinsam, so dass es also - im Gegensatz zum Postulat Euklids -
überhaupt keine Parallelen (d. h. Geradenpaare ohne Schnittpunkt) gibt. Die Längen-
und Winkelmessung auf der Kugel erfolgt bekanntlich durchwegs euklidisch, so dass

keine grundsätzlichen Schwierigkeiten auftreten, sondern eher ein willkommener
Anlass zur Behandlung der sphärischen Trigonometrie vorliegt. Kongruenztransformationen

(also sämtliche Längen und Winkel erhaltende Abbildungen von Q auf
sich selbst) sind die euklidischen Drehungen um die Durchmesser von Q; sie bilden
eine dreiparametrige Gruppe, die sich aus den Spiegelungen an den Durchmesserebenen

von Q erzeugen lässt. Jede Spiegelung kann dabei selbst als Drehung aufgefasst

werden, nämlich um den zur Spiegelebene normalen Durchmesser durch 180°;
eine Unterscheidung zwischen gleich- und gegensinnig-kongruenten Transformationen

fällt mithin in der elliptischen Ebene weg. Die Kreislehre ist unschwer zu
erledigen.

Bei der hyperbolischen Ebene ist die Frage nach einem geeigneten Modell nicht
ohne weiteres zu beantworten. Das bevorzugte projektive Modell nach Cayley-
Kleinschem Muster, das etwa R. Baldus [1] verwendet, verlangt Vertrautheit mit
DoppelVerhältnissen, Kolhneationen und Imaginärgeometrie und ist daher für die
Schule kaum passend. Das konforme Modell von H. Poincare, das H. Meschkowski [3]
und H. Zeitler [4] benutzen, hat zwar den Vorteil euklidischer Winkelmetrik, doch
verursacht der Nachweis der Längentreue von Spiegelungen (die durch Inversionen
an gewissen euklidischen Kreisen repräsentiert werden) ziemliche Umstände. Diese

Schwierigkeiten lassen sich vermeiden, wenn man auch hier wieder auf ein Kugel-

l) Der Verfasser wurde zur Beschäftigung mit dieser Problematik veranlasst, als er beim
Innsbrucker Mathematikertag am 7.10.1974 ein einschlägiges Referat vor Mathematiklehrern

zu halten hatte.



104 Elementarmathematik und Didaktik

modelt zurückgreift, allerdings um den Preis, etwas Raumgeometrie treiben zu müssen,

was aber nicht unbedingt als Nachteil anzusehen ist.
Das betreffende Kugelmodell, das schon F. Klein [2] erwähnt, besteht aus einer

euklidischen Halbkugel ü, berandet durch einen Grosskreis u. Als «Punkte» der
hyperbolischen Ebene gelten dabei die Punkte von Q unter Ausschluss der
Randpunkte, als «Geraden» die zu u normalen Halbkreise von ü (Fig. 1). Wie im Normal-

Figur 1. Kugelmodell der hyperbolischen
Ebene. Von den «Geraden»/, g, h sind /
und g schneidend, g und h parallel, h und

/ überparallel.

riss auf die Randkreisebene ohne weiteres zu erkennen ist, gibt es durch einen Punkt
P unendlich viele «Geraden», die eine gegebene (P nicht enthaltende) «Gerade» g
schneiden, und ebenso unendlich viele, welche dies nicht tun. Die beiden Mengen
werden durch zwei ausgezeichnete «Gerade» getrennt, die mit g den einen oder den
anderen Randpunkt gemeinsam haben; sie werden als die beiden durch P gehenden
«Parallelen» zu g bezeichnet, während die übrigen g nicht schneidenden Geraden
«überparallel» zu g heissen. Die Abweichung vom euklidischen Parallelenaxiom und
zur Situation in der elliptischen Ebene liegt auf der Hand.

Die Winkelmetrik wird wieder durch die euklidische Winkelmessung auf ü
erklärt. Zwei «Geraden» schneiden einander insbesondere unter rechtem Winkel, wenn
die sie repräsentierenden Halbkreise so gelegen sind, dass die Ebene des einen den
Pol der anderen (bezüglich Q) enthält. Zwei Parallele bilden einen Winkel vom
Betrag Null. Überparallele schhessen keinen Winkel ein, besitzen dafür aber ein
«Gemeinlot ».

Die Längenmetrik weicht demgegenüber von der euklidischen stark ab. Seien
U und V die Randpunkte der (eindeutig bestimmten) Verbindungs-«Gerade» g
zweier Punkte A und B, und a <£ WA, ß <£ VUB die «Erhebungswinkel» dieser
Punkte (Fig. 2). Die hyperbolische Länge der von g getragenen (orientierten) Strecke
AB wird dann definiert durch

AB= ln
tg«.

tgß (1)

B*

C*

0 Figur 2. Zur hyperbolischen
Streckenmessung.
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Man bestätigt sofort die Additivität dieser Streckenmessung, indem man für drei
Punkte A, B, C von g bei beliebiger Reihenfolge die Relation

A=B + 13C==AC (2)

nachweist. Rückt bei der Strecke AB entweder A nach U oder B nach V, dann wird
wegen a n/2 bzw. ß 0 in (1) das Längenmass gleich oo; die Randpunkte der
Halbkugel Ü spielen also die Rolle von «unendlich fernen Punkten» der hyperbolischen

Ebene. - Eine nützliche Modifikation der Streckenformel (1) besteht in folgendem:

Projiziert man die Streckenenden A und B aus U auf die in V berührende
Tangente des Halbkreises g nach A* bzw. B* (Fig. 2), so kann man den Quotienten
tga/tg/3 in (1) durch das Teilverhältnis (A*B*V) VÄ*:VB* ersetzen und hat

AB In (A*B*V) (3)

Zum Nachweis der Existenz von Kongruenztransformationen benötigt man den
auch sonst wichtigen Begriff der Inversion, deren Eigenschaften zunächst kurz
zusammengestellt werden sollen. In der (euklidischen) Ebene versteht man unter der
Inversion an einem Kreis c (Mittelpunkt 0, Radius a) die eineindeutige Abbildung, die
einem Punkt P =f= 0 jenen Punkt P' auf dem Strahl OP zuordnet, welcher der Polare
von P bezüglich c angehört. In Polarkoordinaten r,<p lauten die Transformationsgleichungen

mithin:

r cp =99 (4)

Wegen der Gleichberechtigung der Zentralabstände OP r und OP' r' sind
entsprechende Punkte vertauschbar, d.h. dem Punkt Q P' wird der Punkt Q' P
zugewiesen. Diese «Transformation durch reziproke Radien» bildet das Innere von c

auf das Aussengebiet von c ab und umgekehrt, wobei sämtliche Punkte von c fest
bleiben. Jeder Durchmesser von c wird in sich übergeführt, während eine nicht durch
0 gehende Gerade / (ansetzbar durch r b/cos cp) in einen Kreis /' (r' a2/b ¦ cos q>)

verwandelt wird, der das Inversionszentrum 0 in der Richtung von / passiert (Fig. 3).

Jeder Orthogonalkreis q von c wird - mit Rücksicht auf den Potenzsatz OQ ¦ OQ'
OF2 a2 - in sich selbst transformiert, während ein Kreis k allgemeiner Lage in einen

anderen Kreis k' übergeht. Zum Nachweis übe man in Figur 4 auf den Orthogonalkreis

,-»P

\F-F

\Ä

¦•. ai
et /

•JQ

^~-
* ~-

&-<7\
F.F'

- k'

0 ®e^~-+ —

Figur 3. Transformation einer Geraden
durch reziproke Radien

Figur 4. Inverse Kreise.
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q die zentrische Ähnlichkeit r Ar aus; für den so gewonnenen Kreis k hängt dann
das inverse Bild k' mit q' q durch die zentrische Ähnlichkeit r r'ß zusammen, ist
also ebenfalls ein Kreis2). - Neben dieser Kreistreue besitzt die Inversion auch noch
die Eigenschaft der Winkeltreue. Zum Beweis suche man zu den Tangenten tx und t2

im Schnittpunkt P zweier Kurven die entsprechenden Kreise t\ und t2 auf: Sie bilden
in 0 und daher auch in P' den gleichen Winkel wie tx und t2.

Dehnt man die AbbüdungsVorschrift (4) auf den Raum aus, so gelangt man zur
Inversion an einer Kugel r (Mittelpunkt 0, Radius a). Diese räumliche Inversion ist,
wie die Rotation der Figuren 3 und 4 um die jeweilige Symmetrieachse erkennen
lässt, kugeltreu, daher auch kreistreu, und nach wie vor winkeltreu, was man genau
so wie vorhin zeigt.

Als «Spiegelung» der hyperbolischen Ebene an einer «Geraden» s ist nun in dem
hier verwendeten Modell - das der Kenner bereits als Ausschnitt aus dem Poincareschen

Konformmodell des hyperbolischen Raumes identifiziert hat - die Inversion
an jener Orthogonalkugel Z von Q anzusehen, welche mit Q den Halbkreis s gemein
hat; das Inversionszentrum S (der Mittelpunkt von Z) liegt natürlich in der
Randkreisebene (Fig. 5). Wegen der Orthogonalität gehen bei dieser Inversion die Halbkugel

ü und ihr Randkreis u in sich über, ferner wird auf Grund der Kreis- und
Winkeltreue jeder ü angehörende Orthogonalhalbkreis von u wieder in einen solchen
übergeführt. Die Spiegelung ist daher im hyperbolischen Sinn geradentreu und natur-
gemäss winkeltreu. Ihre Längentreue ist durch Betrachtung einer Strecke AB und
ihres Spiegelbildes A'B' unschwer einzusehen (Fig. 5): Die Punktepaare A,A' und
B, B' liegen auf Strahlen durch das Inversionszentrum S, ebenso die zugehörigen
Randpunkte U, U' und V, V sowie die gemäss Figur 2 hinzugefügten Hilfspunkte
A*,A'* und _?*, _?'*; wegen der parallelen Lage der Halbkreistangenten in V und V
besteht nun die Teilverhältnisgleichheit (A*B*V) (A'*B'*V), woraus über (3)

die behauptete Abstandsgleichheit AB A'B' folgt. - Abschliessend wäre noch zu
ergänzen, dass zu den Spiegelungen in Gestalt der betrachteten Inversionen an

Orthogonalkugeln von u als Grenzfälle auch noch die euklidischen Spiegelungen an
den Normalebenen von u hinzuzunehmen sind.

Bei allen diesen «Spiegelungen» ist festzustellen, dass die «Verbindungsstrecke»
entsprechender Punkte P, P' zur «Spiegelachse» s normal ist und durch diese hal-

bT/\,.
Figur 5. Zum Nachweis der

Längentreue einer Spiegelung.

Zur Ergänzung dieser Aussage für Kreise k, die 0 umschliessen, gehe man von einem Kreis
p aus, der c in den Endpunkten eines Durchmessers schneidet; ihm entspricht - wieder auf
Grund des Potenzsatzes - der zu p bezüglich des genannten Durchmessers spiegelbildlich
angeordnete Kreis p'.
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biert wird. Durch Zusammensetzung solcher Spiegelungen gelangt man zu den
allgemeinsten Kongruenzabbildungen der hyperbolischen Ebene, wobei diesmal - im
Gegensatz zu den Verhältnissen in der elliptischen Ebene - zwischen gleich- und
gegensinnig-kongruenten unterschieden werden kann, je nachdem ob die Anzahl der

komponierten Spiegelungen gerade oder ungerade ist. Ein dem Randkreis u
aufgeprägter Umlaufsinn bleibt dabei erhalten bzw. wird umgekehrt.

Aufschlussreiches Übungsmaterial würde die hyperbolische Kreislehre bieten.
Man könnte alle drei Kreisarten in einheitlicher Weise gewinnen, indem man einen
festen Punkt an sämtlichen «Geraden» eines eigentlichen Büschels, eines Parallelenbüschels

bzw. eines uneigentlichen Büschels spiegelt, wobei letzteres als «Normalenschar»

einer festen «Geraden» einzuführen wäre. Die solcherart als Ort sämtlicher
Spiegelpunkte erzeugten «eigentlichen Kreise», «Grenzkreise» bzw. «Abstandskreise»
werden im vorliegenden Modell durch euklidische Kreise bzw. Kreisbögen auf der

Halbkugel Q repräsentiert, welche keinen, einen bzw. zwei (reelle) Randpunkte
aufweisen.

Das Operieren mit dem Kugelmodell schult zwar bestens die Raumanschauung,
besitzt aber den unleugbaren Nachteil, kaum unmittelbar ausführbar zu sein. Will
man auf einer ebenen Fläche zeichnen - und zwar über blosse Skizzen hinausgehend -,
so muss man Methoden der darstellenden Geometrie einsetzen. Der Normalriss auf
die Randkreisebene führt so auf das projektive Modell nach Cayley-Klein [1], während

die stereographische Projektion aus einem Randpunkt - die sich als räumliche
Inversion deuten lässt - das konforme Modell nach Poincare liefert [3, 4].

Abschliessend mag noch kurz der Weg zur hyperbolischen Trigonometrie
gewiesen werden. Es handelt sich um die Herleitung der Beziehungen zwischen den
Stücken eines rechtwinkligen Dreiecks ABC, dessen Winkel mit a, ß, y n/2 und
dessen (hyperbolisch ausgemessene) Seiten mit a, b, c bezeichnet seien. Es bedeutet
keine Einschränkung, wenn man der Einfachheit halber die rechtwinklige Ecke C

im Scheitel der Halbkugel Q annimmt (Fig. 6), wohin sie ja durch eine geeignete

Kongruenztransformation gebracht werden kann. Die «geographischen Breiten»
2cp und 2xp von A bzw. B hängen mit den Dreieckskatheten zufolge (1) durch die
Relationen

cot cp cotxp ¦¦ (5)

ir

X- 1/x,

Figur 6. Zur Auflosung des rechtwinkligen
Dreiecks.
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zusammen. In einem dem Dreieck ABC angepassten kartesischen Koordinatensystem

0 (x, y, z) haben dann bei Verwendung des Halbkugelradius als Längeneinheit
die Punkte A und B die Koordinaten:

A xx cos 2cp th b, yx 0, zx sin 2cp 1/ch b;

B x2 0, y2 cos 2xp th a, z2 sin 2^i 1/ch a

Für den Ursprungsabstand m der Ebene des die Hypotenuse AB tragenden
Halbkreises findet man aus Figur 6, die den Normalriss auf die Randkreisebene z 0
darstellt,

m -L± mit Ä2 x2 + y\ (7)

woraus sich der Halbkreisradius r über

(8)*f + yl ä2

ergibt. Die durch die Höhe erzeugten Abschnitte der Hypotenusenprojektion h
haben auf Grund ähnlicher Dreiecke die Längen

mx, my„

Nun erhält man für die zur hyperbohschen Ausmessung der Hypotenuse A B gemäss
(1) benötigten Erhebungswinkel die Formeln

tg (VUA) -\ _______, tg (VUB) -A_ -_--*_. (10)
r — p ry2 — mxx r + q rxx + my2

Mit Rücksicht auf (6) bis (10) hat man daher zunächst

^^ tg (VUA) _ y2zx
_

r„1 + wy2_ zx ]/l-z2z2+l-
tg (VUB) xxz2 ry2-mxx z2 ]/l- z\z\- l + z\

Der Übergang zu ec + e~c führt dann nach einigen Umformungen auf

2

(11)

(12)

und damit über (6) auf den «hyperbolischen Pythagoras»:

che ch a ¦ chb (13)

Zur Berechnung des Dreieckswinkels a bei.A ziehe man die Tangenten AS und
AT an die Kathete AC bzw. an die Hypotenuse AB heran, deren Spurpunkte S und
T in der Randkreisebene auf der Spurgeraden x l/xx der die Halbkugel in A
berührenden Ebene liegen (Abb. 6). Das rechtwinklige Dreieck AST hat die Abmessungen

I5-*2,_i ,„d _f-<_^_.-*?. »14,
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Der gesuchte Winkel a <£ TAS ergibt sich dann aus tga 'ST/ÄS y2zx/xx, also
mit Rücksicht auf (6) aus

th a

tga=shT- <15>

Unter Hinzunahme der analogen Formel tg ß th b/sh a können dann alle übrigen
Relationen im rechtwinkligen Dreieck ABC gefolgert werden. Sie lassen sich
bekanntlich in einer modifizierten «Neperschen Regel» zusammenfassen [3].

W. Wunderlich, Technische Hochschule Wien
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Die Vierfach-Spiegelungen an Geraden

Das Produkt von vier Spiegelungen an Geraden der Ebene ergibt bekanntlich
entweder eine Translation r oder eine Rotation q (vgl. [1] S. 41). Anstelle der
üblichen, stark aufgesplitterten Fall-Untersuchung zum Nachweis vorstehender
Behauptung werden wir im Folgenden eine allgemeine Beweisführung bringen.

Es werde vorausgeschickt, dass der gerichtete Winkel co(a, b) zwischen zwei
Geraden a, b modulo 180° zu verstehen ist und dass Vertauschung der Geraden
Umkehr des Vorzeichens bedingt:

co (a,b) —m (b, a) (1)

Einander schneidende Geraden bilden von Null verschiedene Winkel. Will man
daher von einem Winkel zwischen zwei Parallelen sprechen, so hat man diesem die
Grösse 0° mod 180° beizulegen. In Ergänzung von (9) [1] gelten daher die
Äquivalenzen :

a |j b <s^- aa ¦ ab x •€--> m (a, b) 0° mod 180° (2)

Für vier Geraden a, b, c, d eines Büschels gilt:

tw (a, b) +oj (b, c) + co (c, d) + m (d, a) 0° mod 180° (3)

Verschiebt man eine oder einige der Geraden parallel zu sich, so entsteht ein Vierseit,
für dessen Winkel (wegen der Winkelsätze für Parallelen) ebenfalls Gleichung (3)
gilt (Fig. 1).
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