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Elementarmathematik und Didaktik
Elementarer Zugang zur hyperbolischen Geometrie

Moderne Lehrpline enthalten gelegentlich die Anregung, im Rahmen des
Mathematikunterrichts an hoheren Schulen in den Abschlussklassen auch auf die
Gedankenwelt der nichteuklidischen Geometrien einzugehen. Wenngleich dies fiir
das Gros der Schiiler wohl als Hochstapelei anzusehen wire, mag es in interessierten
Arbeitsgemeinschaften nicht ganz aussichtslos sein, wenigstens eine Ahnung der
Ideen zu vermitteln. Es erhebt sich dabei allerdings die Frage, wie man ohne aus-
reichende Vorkenntnisse aus projektiver Geometrie einen moglichst elementaren
Zugang finden kann?).

Rein axiomatische Entwicklungen scheiden als zu schwierig und unanschaulich
zweifellos von vornherein aus, obwohl die Stellung des euklidischen Parallelenpostu-
lats natiirlich einfiihrend grob skizziert werden muss. Anschliessend wird man sich
aber auf das Operieren in geeigneten Modellen nichteuklidischer Ebenen konzen-
trieren diirfen, um die von der euklidischen Ebene abweichenden Phianomene her-
vorzuheben.

Fiir die elliptische Ebene bietet sich hier zwanglos das geldufige Kugelmodell an,
bei welchem die Grosskreise einer euklidischen Kugel £2 als «Geraden» und die Anti-
podenpaare von £ als « Punkte» angesprochen werden. Irgendzwel «Geraden» haben
stets einen « Punkt» gemeinsam, so dass es also ~ im Gegensatz zum Postulat Euklids -
iiberhaupt keine Parallelen (d.h. Geradenpaare ohne Schnittpunkt) gibt. Die Lingen-
und Winkelmessung auf der Kugel erfolgt bekanntlich durchwegs euklidisch, so dass
keine grundsitzlichen Schwierigkeiten auftreten, sondern eher ein willkommener
Anlass zur Behandlung der sphirischen Trigonometrie vorliegt. Kongruenztransfor-
mationen (also simtliche Lingen und Winkel erhaltende Abbildungen von £ auf
sich selbst) sind die euklidischen Drehungen um die Durchmesser von £; sie bilden
eine dreiparametrige Gruppe, die sich aus den Spiegelungen an den Durchmesser-
ebenen von 2 erzeugen lisst. Jede Spiegelung kann dabei selbst als Drehung aufge-
fasst werden, ndmlich um den zur Spiegelebene normalen Durchmesser durch 180°;
eine Unterscheidung zwischen gleich- und gegensinnig-kongruenten Transformatio-
nen fillt mithin in der elliptischen Ebene weg. Die Kreislehre ist unschwer zu er-
ledigen.

Bei der hyperbolischen Ebene ist die Frage nach einem geeigneten Modell nicht
ohne weiteres zu beantworten. Das bevorzugte projektive Modell nach Cayley-
Kleinschem Muster, das etwa R. Baldus [1] verwendet, verlangt Vertrautheit mit
Doppelverhiltnissen, Kollineationen und Imagindrgeometrie und ist daher fiir die
Schule kaum passend. Das konforme Modell von H. Poincaré, das H. Meschkowski [3]
und H. Zeitler [4] benutzen, hat zwar den Vorteil euklidischer Winkelmetrik, doch
verursacht der Nachweis der Langentreue von Spiegelungen (die durch Inversionen
an gewissen euklidischen Kreisen reprasentiert werden) ziemliche Umstdnde. Diese
Schwierigkeiten lassen sich vermeiden, wenn man auch hier wieder auf ein Kugel-

1) Der Verfasser wurde zur Beschidftigung mit dieser Problematik veranlasst, als er beim
Innsbrucker Mathematikertag am 7.10.1974 cin einschligiges Referat vor Mathematik-
lehrern zu halten hatte.
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modell zuriickgreift, allerdings um den Preis, etwas Raumgeometrie treiben zu miis-
sen, was aber nicht unbedingt als Nachteil anzusehen ist.

Das betreffende Kugelmodell, das schon F. Klein [2] erwiihnt, besteht aus einer
euklidischen Halbkugel 2, berandet durch einen Grosskreis #. Als «Punkte» der
hyperbolischen Ebene gelten dabei die Punkte von £ unter Ausschluss der Rand-
punkte, als «Geraden» die zu # normalen Halbkreise von £ (Fig. 1). Wie im Normal-

Figur 1. Kugelmodell der hyperbolischen

Ebene. Von den «Geraden» f, g, & sind f

und g schneidend, g und % parallel, % und
[ uiberparallel.

riss auf die Randkreisebene ohne weiteres zu erkennen ist, gibt es durch einen Punkt
P unendlich viele «Geraden», die eine gegebene (P nicht enthaltende) «Gerade» g
schneiden, und ebenso unendlich viele, welche dies nicht tun. Die beiden Mengen
werden durch zwei ausgezeichnete «Gerade» getrennt, die mit g den einen oder den
anderen Randpunkt gemeinsam haben; sie werden als die beiden durch P gehenden
«Parallelen» zu g bezeichnet, wihrend die iibrigen g nicht schneidenden Geraden
«iiberparallel» zu g heissen. Die Abweichung vom euklidischen Parallelenaxiom und
zur Situation in der elliptischen Ebene liegt auf der Hand.

Die Winkelmetrik wird wieder durch die cuklidische Winkelmessung auf £ er-
klirt. Zwei «Geraden» schneiden einander insbesondere unter rechtem Winkel, wenn
die sie reprasentierenden Halbkreise so gelegen sind, dass die Ebene des einen den
Pol der anderen (beziiglich ) enthilt. Zwei Parallele bilden einen Winkel vom Be-
trag Null. Uberparallele schliessen keinen Winkel ein, besitzen dafiir aber ein «Ge-
meinlot».

Die Lingenmetrik weicht demgegeniiber von der euklidischen stark ab. Seien
U und V die Randpunkte der (eindeutig bestimmten) Verbindungs-«Gerade» g
zweler Punkte A und B, und a = L VUA, = < VU B die «Erhebungswinkel» dieser
Punkte (Fig. 2). Die hyperbolische Lange der von g getragenen (orientierten) Strecke
AB wird dann definiert durch

e tg o
AB =y —— (1)
tg
a*
A
g
B|g*
e*
* W - Figur 2. Zur hyperbolischen

U v Streckenmessung.
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Man bestitigt sofort die Additivitdt dieser Streckenmessung, indem man fiir drei
Punkte A, B, C von g bei beliebiger Reihenfolge die Relation

AB + BC = AC (2)

nachweist. Riickt bei der Strecke A B entweder 4 nach U oder B nach V, dann wird
wegen « = 7/2 bzw. f = 0 in (1) das Lingenmass gleich oco; die Randpunkte der
Halbkugel £ spielen also die Rolle von «unendlich fernen Punkten» der hyperboli-
schen Ebene. — Eine niitzliche Modifikation der Streckenformel (1) besteht in folgen-
dem: Projiziert man die Streckenenden A und B aus U auf die in V berithrende
Tangente des Halbkreises g nach 4* bzw. B* {Fig. 2), so kann man den Quotienten
tga/tg f in (1) durch das Teilverhiltnis (4*B*V) = VA*:VB* ersetzen und hat

AB = In (A*B*V) . (3)

Zum Nachweis der Existenz von Kongruenztransformationen benétigt man den
auch sonst wichtigen Begriff der Inversion, deren Eigenschaften zunichst kurz zu-
sammengestellt werden sollen. In der (euklidischen) Ebene versteht man unter der
Inversion an einem Kreis ¢ (Mittelpunkt O, Radius a) die eineindeutige Abbildung, die
einem Punkt P = O jenen Punkt P’ auf dem Strahl OP zuordnet, welcher der Polare
von P beziiglich ¢ angehért. In Polarkoordinaten 7,¢ lauten die Transformations-
gleichungen mithin:

B
Bmop i (4)
Wegen der Gleichberechtigung der Zentralabstinde OP = r und OP’ = #' sind ent-
sprechende Punkte vertauschbar, d.h. dem Punkt Q = P’ wird der Punkt Q' = P
zugewiesen. Diese «Transformation durch reziproke Radien» bildet das Innere von ¢
auf das Aussengebiet von ¢ ab und umgekehrt, wobei simtliche Punkte von ¢ fest
bleiben. Jeder Durchmesser von ¢ wird in sich iibergefiihrt, wihrend eine nicht durch
O gehende Gerade ! (ansetzbar durch » = b/cos ¢) in einen Kreis I’ (¢ = a2/b - cos @)
verwandelt wird, der das Inversionszentrum O in der Richtung von [ passiert (Fig. 3).
Jeder Orthogonalkreis ¢ von ¢ wird — mit Riicksicht auf den Potenzsatz OQ - 00’
= OF? = g% —in sich selbst transformiert, wihrend ein Kreis k allgemeiner Lage in einen
anderen Kreis £ tibergeht. Zum Nachweis iibe man in Figur 4 auf den Orthogonalkreis

Figur 3. Transformation einer Geraden Figur 4. Inverse Kreise.
durch reziproke Radien.
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g die zentrische Ahnlichkeit 7 = A7 aus; fiir den so gewonnenen Kreis % hingt dann
das inverse Bild k' mit ¢" = ¢ durch die zentrische Ahnlichkeit 7> = #//4 zusammen, ist
also ebenfalls ein Kreis?). — Neben dieser Kreistreue besitzt die Inversion auch noch
die Eigenschaft der Winkeltrene. Zum Beweis suche man zu den Tangenten ¢, und ¢,
im Schnittpunkt P zweier Kurven die entsprechenden Kreise ¢, und ¢, auf: Sie bilden
in O und daher auch in P’ den gleichen Winkel wie ¢, und £,

Dehnt man die Abbildungsvorschrift (4) auf den Raum aus, so gelangt man zur
Inversion an einer Kugel I” (Mittelpunkt O, Radius a). Diese r@umliche Inversion ist,
wie die Rotation der Figuren 3 und 4 um die jeweilige Symmetrieachse erkennen
ldsst, kugeltreu, daher auch kreistren, und nach wie vor winkelfren, was man genau
so wie vorhin zeigt.

Als «Spiegelung» der hyperbolischen Ebene an einer «Geraden» s ist nun in dem
hier verwendeten Modell — das der Kenner bereits als Ausschnitt aus dem Poincaré-
schen Konformmodell des hyperbolischen Raumes identifiziert hat - die Inversion
an jener Orthogonalkugel X' von 2 anzusehen, welche mit £ den Halbkreis s gemein
hat; das Inversionszentrum S (der Mittelpunkt von X)) liegt natiirlich in der Rand-
kreisebene (Fig. 5). Wegen der Orthogonalitit gehen bei dieser Inversion die Halb-
kugel 2 und ihr Randkreis # in sich iiber, ferner wird auf Grund der Kreis- und
Winkeltreue jeder £2 angehorende Orthogonalhalbkreis von # wieder in einen solchen
iibergefiihrt. Die Spiegelung ist daher im hyperbolischen Sinn geradentren und natur-
gemiss winkeltreu. Thre Ldngentreue ist durch Betrachtung einer Strecke A B und
ihres Spiegelbildes 4’B’ unschwer einzusehen (Fig. 5): Die Punktepaare 4, 4’ und
B, B’ liegen auf Strahlen durch das Inversionszentrum S, ebenso die zugehérigen
Randpunkte U, U’ und V,V’ sowie die gemdss Figur 2 hinzugefiigten Hilfspunkte
A*, A"* und B*, B'¥; wegen der parallelen Lage der Halbkreistangenten in ¥V und 7’
besteht nun die Teilverhiltnisgleichheit (A*B*V) = (A"*B’*V’), woraus iiber (3)
die behauptete Abstandsgleichheit AB = A’B’ folgt. — Abschliessend wire noch zu
erginzen, dass zu den Spiegelungen in Gestalt der betrachteten Inversionen an
Orthogonalkugeln von # als Grenzfille auch noch die euklidischen Spiegelungen an
den Normalebenen von # hinzuzunehmen sind.

Bei allen diesen «Spiegelungen» 1ist festzustellen, dass die « Verbindungsstrecke»
entsprechender Punkte P, P’ zur «Spiegelachse» s normal ist und durch diese hal-

Figur 5. Zum Nachweis der
Lingentreue einer Spiegelung.

2) Zur Ergianzung dieser Aussage fitr Kreise %, die O umschliessen, gehe man von einem Kreis
¢ aus, der ¢ in den Endpunkten eines Durchmessers schneidet; ihm entspricht — wieder auf
Grund des Potenzsatzes — der zu p beziiglich des genannten Durchmessers spiegelbildlich
angeordnete Kreis p’.
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biert wird. Durch Zusammensetzung solcher Spiegelungen gelangt man zu den all-
gemeinsten Kongruenzabbildungen der hyperbolischen Ebene, wobei diesmal — im
Gegensatz zu den Verhiltnissen in der elliptischen Ebene — zwischen gleich- und
gegensinnig-kongruenten unterschieden werden kann, je nachdem ob die Anzahl der
komponierten Spiegelungen gerade oder ungerade ist. Ein dem Randkreis u# aufge-
priagter Umlaufsinn bleibt dabei erhalten bzw. wird umgekehrt.

Aufschlussreiches Ubungsmaterial wiirde die hyperbolische Kreislehre bieten.
Man konnte alle drei Kreisarten in einheitlicher Weise gewinnen, indem man einen
festen Punkt an simtlichen «Geraden» eines eigentlichen Biischels, eines Parallelen-
biischels bzw. eines uneigentlichen Biischels spiegelt, wobei letzteres als « Normalen-
schar» einer festen «Geraden» einzufithren wire. Die solcherart als Ort simtlicher
Spiegelpunkte erzeugten «eigentlichen Kreise», « Grenzkreise» bzw. «Abstandskreise»
werden im vorliegenden Modell durch euklidische Kreise bzw. Kreisbogen auf der
Halbkugel 2 reprisentiert, welche keinen, einen bzw. zwei (reelle) Randpunkte auf-
weisen.

Das Operieren mit dem Kugelmodell schult zwar bestens die Raumanschauung,
besitzt aber den unleugbaren Nachteil, kaum unmittelbar ausfithrbar zu sein. Will
man auf einer ebenen Fliache zeichnen — und zwar {iber blosse Skizzen hinausgehend —,
so muss man Methoden der darstellenden Geometrie einsetzen. Der Normalriss auf
die Randkreisebene fithrt so auf das projektive Modell nach Cayley-Klein [1], wdh-
rend die stereographische Projektion aus einem Randpunkt — die sich als rdumliche
Inversion deuten lisst — das konforme Modell nach Poincaré liefert [3, 4].

Abschliessend mag noch kurz der Weg zur hyperbolischen Trigonometrie ge-
wiesen werden. Es handelt sich um die Herleitung der Beziehungen zwischen den
Stiicken eines rechtwinkligen Dreiecks ABC, dessen Winkel mit «, 8, y = #/2 und
dessen (hyperbolisch ausgemessene) Seiten mit a, b, ¢ bezeichnet seien. Es bedeutet
keine Einschrinkung, wenn man der Einfachheit halber die rechtwinklige Ecke C
im Scheitel der Halbkugel £ annimmt (Fig. 6), wohin sie ja durch eine geeignete
Kongruenztransformation gebracht werden kann. Die «geographischen Breiten»
2¢ und 2y von A bzw. B hingen mit den Dreieckskatheten zufolge (1) durch die
Relationen

cotp = ¢, coty=¢" (5)

Figur 6. Zur Auflosung des rechtwinkligen
Dreiecks.
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zusammen. In einem dem Dreieck ABC angepassten kartesischen Koordinaten-
system O (x, y, z) haben dann bei Verwendung des Halbkugelradius als Lingeneinheit
die Punkte 4 und B die Koordinaten:

A...xy=cos2¢=thbd, vy, =0, z =sin2¢ = 1/chb;

6
B...x%=0, y=cos2y=tha, z,=sin2¢p = 1/cha. (6)

Fiir den Ursprungsabstand m der Ebene des die Hypotenuse 4B tragenden
Halbkreises findet man aus Figur 6, die den Normalriss auf die Randkreisebene z = 0
darstellt,

%12

o g Wit Beaity, )
woraus sich der Halbkreisradius 7 iiber
2l ot — x?+3}§—-z§y§ _ 1-23 o
X+ Y; h?

ergibt. Die durch die Hohe erzeugten Abschnitte der Hypotenusenprojektion %
haben auf Grund dhnlicher Dreiecke die Lingen
mx, mYy,
p= y o g= 9
¥z X1
Nun erhédlt man fiir die zur hyperbolischen Ausmessung der Hypotenuse 4 B gemiss
(1) benétigten Erhebungswinkel die Formeln

tg(VUA) = L —_ 20 o pup— -

r—p  ry,—mx r—i—qmrxi—i—myz'

Mit Riicksicht auf (6) bis (10) hat man daher zunichst

(10)

_tg(VUA)  yez rx+my,  z Yl1—-2ii+1—2

== = _=— . i - (11)
tg(VUB) %12, ry,—mzx;  z, Jl—2222—1+2%
Der Ubergang zu ¢¢ + ¢~¢ fithrt dann nach einigen Umformungen auf
&€+ ¢ = 8 (12)
Z1%3
und damit iiber (6) auf den «hyperbolischen Pythagorasy:
chec=cha.chb. (13)

Zur Berechnung des Dreieckswinkels « bei. A ziehe man die Tangenten 4 S und
AT an die Kathete AC bzw. an die Hypotenuse 4 B heran, deren Spurpunkte S und
T in der Randkreisebene auf der Spurgeraden x = 1/x, der die Halbkugel in A4 be-
rithrenden Ebene liegen (Abb. 6). Das rechtwinklige Dreieck AST hat die Abmes-
sungen

AS — 1 == 2
A4S =tg2¢ = %. and ST = le)ya _ y221 |
1 ; :

(14)
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Der gesuchte Winkel « = < TA S ergibt sich dann aus tga = ST/AS = y,z,/%,, also
mit Riicksicht auf (6) aus

; tha 15

ga’ “_ Sh b - ( )
Unter Hinzunahme der analogen Formel tgf = th b/sh a kénnen dann alle iibrigen
Relationen im rechtwinkligen Dreieck ABC gefolgert werden. Sie lassen sich be-
kanntlich in einer modifizierten «Neperschen Regel» zusammenfassen [3].

W. Wunderlich, Technische Hochschule Wien

LITERATURVERZEICHNIS

(1] R.Barpus-F. LOBELL: Nichteuklidische Geometrie (Sammig. Goschen, Bd. 970/970a). 4. Aufl.
(Berlin 1964} .

[2] F. KLeiN-H. RosEmaNN: Vorlesungen iiber nichteuklidische Geometrie (Grundlehren d. math.,
Wiss., Bd. 28). (Berlin), 3. Aufl. 1928, Nachdruck 1968.

[3] H.Mescukowskri: Nichteuklidische Geometrie. 4. Aufl. (Braunschweig 1971). — Siehe auch:
Die Ableitung der trigonometvischen Fovmeln im Poincavéschen Modell dev hyperbolischen
Geometrie. El. Math. 7, 130-132 (1952).

(4] H. ZerrLERr: Hyperbolische Geometrie (Beitrige f. d. math. Unterr., Bd. 3). (Miainchen 1970).

Die Vierfach-Spiegelungen an Geraden

Das Produkt von vier Spiegelungen an Geraden der Ebene ergibt bekanntlich
entweder eine Translation 7 oder eine Rotation p (vgl. [1] S. 41). Anstelle der iib-
lichen, stark aufgesplitterten Fall-Untersuchung zum Nachweis vorstehender Be-
hauptung werden wir im Folgenden eine allgemeine Beweisfithrung bringen.

—>
Es werde vorausgeschickt, dass der gerichtete Winkel w (a,b) zwischen zwei
Geraden a, b modulo 180° zu verstehen ist und dass Vertauschung der Geraden Um-
kehr des Vorzeichens bedingt:

©(a,b) = —w (b a). 1)

Einander schneidende Geraden bilden von Null verschiedene Winkel. Will man
daher von einem Winkel zwischen zwei Parallelen sprechen, so hat man diesem die
Grosse 0° mod 180° beizulegen. In Ergédnzung von (9) [1] gelten daher die Aqui-

valenzen:
—_—
afjb «=> 0, - 0,=71 <= w(ab) = 0°mod 180° (2)

Fiir vier Geraden a, b, ¢, d eines Biischels gilt:
_—
b,c

— — —
w(a,b) +w(bc) + wlcd) + o(da) = 0°mod 180°. (3)

Verschiebt man eine oder einige der Geraden parallel zu sich, so entsteht ein Vierseit,
fiir dessen Winkel (wegen der Winkelsitze fiir Parallelen) ebenfalls Gleichung (3)
gilt (Fig. 1).
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