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We now turn to the problem of determining the subsets of Z, which are fields.
In the following U, will denote U, U {0} and if F is a field, F* will denote the non-zero
elements of F.

Theorem 4. If F is a subset of Z, which is a field, then there is an a such that
aln, (a,nfa)=1and F=aT.,.

Proof: If F is a subset of Z, which is a field, then F* is a group under multi-
plication mod #. Hence, by Theorem 3 there is an a such that a |, (a,1/a) =1 and
F*C a U, which is equivalent to F C a U,. Now let ¢ be the multiplicative identity of
F,and henceof aU,. Thena=ae=¢+e+---+e¢ {a summands) must be in F. Also,
if uelU,, va=a+a+---+a (u summands) must be in F. Consequently a U, C F.
Also, 0 F and thus F=aT,.

Theorem 5. Assume n=ab where (a,b)=1. a U, is a field if and only if b is a
prime.

Proof: If b is not a prime then b= cd where ¢,d > 1. Now (ca,#) = ca and hence
ca¢a U, by Theorem 3i. Also ca == 0 (mod n). Hence, ca¢a U,. But adding a to itself
¢ times gives ¢ a. Therefore, a U, is not closed under addition mod # and hence is not
a field. Now assume b is a prime. First of all we observe that 0a,14,2a4, ..., (6—1)a
are b distinct elements mod #. Also, since (Za,n)=a(i,b)=a for i=1,2, ..., b—1
and (a,n/a)=1,iacalU, for 1=1,2, ..., b—1 by Lemma 1. Since the number of
elements in a U, is ¢(b) =b— 1, we have aU,={14,2a, ..., (b—1)a}. Hence, a T,
={0a,1a,2a,..., (b—1)a} and this set clearly forms a group under addition mod #.
Hence, a U, is a field.

Combining the last two theorems we have the following characterization of the
subsets of Z, which are fields.

Corollary 2. Z, has subsets which are fields if and only if there exists a prime p
such that |z and $* ¥ n. Moreover, for every such prime p, the set (n/p) U, is a field
and all subsets of Z, which are fields are obtained in this way.

J. E. Nymann, University of Texas, El Paso

REFERENCE

[1] EpwiNn HEWITT and H. S. ZUCKERMANN, The multiplicative semigroup of integers modulo m,
Pacific J. Math. 70 1291-1308 (1960).

Kleine Mitteilungen

Ein elementarer Beweis fiir die Integraldarstellung der
Laplaceschen Zahlen

In der numerischen Analysis haben die Laplaceschen Zahlen L,, L,, L, ..., neben
den Eulerschen und Bernoullischen Zahlen eine grosse Bedeutung erlangt [1]. Sie
werden {iblicherweise durch die Koeffizienten der Taylor-Reihe

x
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oder, was auf dasselbe hinausliduft, durch die Rekursionsformel
i, L, 1
Lt n—p+1 a4’

neN, (2)

erklirt. Fiir die Laplaceschen Zahlen gilt auch die Integraldarstellung
1

L= (—1)Mf(i) i, veN, (3)

o
die gewohnlich durch gliedweise Integration der gleichmissig konvergenten Reihe

1-2 = (o)~ ()r+ Q)=+, tery,
itber das Intervall [0,1] bei festem x € (—1,1) und anschliessendem Koeffizienten-
vergleich mit (1) bewiesen wird. Im folgenden soll die Integraldarstellung (3) auf der
Basis der Rekursionsformel (2) in dem Sinne elementar bewiesen werden, als nur die
Differentiation und Integration von Polynomen benutzt werden; insbesondere wer-
den eine Bezugnahme auf die Theorie der Potenzreihen und die Problematik bei der
Vertauschung von Grenzprozessen vermieden.

Ausgehend von den bestimmten Integralen

1
!l (n — p)!
/(t——l)“t"“"dtm(wl)”#mqu, uef0,...,n}, neN,
QO

die man durch g-malige partielle Integration unmittelbar verifiziert, entsteht

o
-1 (":): dt=~zm+1)s

[[w—», wel0,...,n}, neN,
v=0 n p=0
0 vEpu
und damit weiter
2, (—=1)() (=1 d *
= = l— i 0,...,n}, N. 4
,.;;'ﬂ-—'l’+1 (n+1)! dt,‘,[:z( 1’) - ME{ n} n e ()

Es folgt die Identitdt zweier Polynome n-ten Grades,

5 (=1)°() (=4 a ~

= e i — ), eN, teR, 5
,,;:n—-v—i—l (n+ 1)1 dthﬂ( »om G)
da diese laut (4) an den n 4 1 Stellen £ = 0,1,..., n ibereinstimmen. Integration
von (5) tiber das Intervall [0,1] ergibt
1 u L
. S — N, 6
n+1 ~n—v+1 ke (©)
- mit
1
e I 1)""1f(:) it, veN (7)
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Die Rekursionsformeln (2) und (6) liefern dann die gesuchte Identitit
L,=L,, veN. (8)
Walter Gerdes, Universitit Karlsruhe
LITERATUR
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Area Preserving Homeomorphisms

W. J. Firey [1965] has shown that an affinity of d-dimensional euclidean space
E< which preserves A-dimensional volume, for some 2=1,2, ..., d — 1, is an isometry.
Here we shall generalize the case 2 ==d — 1 of this result to arbitrary homeomorphisms
of E4. Specifically, we shall prove:

Theorem. Let @ be a homeomorphism of E9 onto itself, which preserves surface
area. Then @ is an isometry.

Before proceeding with the proof, we must make our terms more explicit. We
shall take surface area in the Cantor-Minkowski sense. That is, if 4 is a set in E9,
and 4 , denotes the set of points of E¢ whose distance from 4 is at most g, then the
surface area S(A4) of 4 is defined in terms of the volume V by

1

S(4) mgh_x}le T3 V{4, ,
if this limit exists. In saying that @ preserves surface area we shall mean that, for
each set 4 in E4, S(4)= S(4 D) if either surface area is defined. In fact, we shall
only use this property when 4 or A @ is the boundary of a ball, so the assumption
of the theorem is unnecessarily strong.

To prove the theorem, we shall use, as did Firey, the isoperimetric theorem,
which states that, among all bodies (compact sets which are the closures of their
interiors) with the same surface area in E¢, the balls, and only the balls, have the
maximum volume. However, since we cannot so easily use the underlying linear
structure of E¢, our proof must necessarily be a little less direct than Firey’s.

Firstly, let B be any (euclidean) ball in E<. Then B® has the same surface area
as B, and so, by the isoperimetric theorem, it has no greater volume than B. (For
brevity, we talk about the surface area of B, rather than of its boundary.) Now let
D be an arbitrary body in E<, with volume V, say. Then, for any preassigned ¢ > 0,
we can cover D with balls, whose total volume does not exceed V 4 e. It follows that
the volume of D® cannot exceed V + ¢ also, and since ¢ was arbitrary, we deduce
that @ cannot increase volume.

The same argument applied to the inverse homeomorphism @-, which also
preserves surface area, shows that @ must preserve volume. A second application of
the isoperimetric theorem, this time characterizing the cases of equality, shows that,
for each ball B, B® is a congruent ball. Since two points of E¢ determine the ball
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with the segment joining them as diameter, we now see that @ cannot increase
distance. Again considering @1, we conclude that @ preserves distance; that is, @
is an isometry of E4, as was claimed.

The proof above does not extend to the cases of homeomorphisms which pre-
serve volume of some intermediate dimension (except that length preserving homeo-
morphisms are obviously isometries). So, it 1s natural to ask:

Problem: Is it true that a homeomorphism of E< onto itself which preserves
k-dimensional volume, for some k=2, ..., d — 2, is an isometry ?

P. McMullen, University College London

REFERENCE
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645 (1965).

Even Perfect and Super Perfect Numbers

If o(n) is the sum of the divisors of # and & a natural number then the k-fh iterate
of a(n) is denoted by o*(n): that is, 61(n) equals o(n) and for & exceeding 1, o*(n) is
defined recursively as o(¢*~1(n)). The solutions in even natural numbers, #, of the
equation g*(n) = 2 n are for £ = 1 the even perfect numbers, the Euclid numbers
22 (2441 — 1), where 2°*! — 1 is a (Mersenne) prime. D. Suryanarayana defined super
perfect numbers to be the solutions of o(o(n)) = 2 n, the preceding identity with
k = 2, and he showed that the even super perfect numbers were precisely # = 24
where, as before, 241 — 1 is prime [2].

It will be shown here that for no other value of £ does g*(n) = 2 n have a solution
in even natural numbers. Needed in the proof of this result is the weak inequality
ol(n) = { + n, for n = 2, with equality if and only if { = 1 and # is prime or j = 2 and
n = 2. The latter is easily established by repeated application of the inequality
ag(n) = 1+ n, with equality iff # is prime.

T heorem. The equation o%(n) = 2 » has a solution in even natural numbers if and
only if either £ = 1 and # = 22 (2°*! — 1) or £ = 2 and »n = 2% where in both cases
24+l _ 1 is prime.

Proof. The case of 2 = 1, Euler’s characterisation of even perfect numbers,
appears in most elementary number theory texts, for example [1], so only 2 = 2 will
be considered in the proof.

Let n = 22 m where m is odd and greater than 1.

Then
o*(n) = o*=1 [(2°" — 1) - o(m)]
> (k—2)+1+am)+ (2°* — 1) - o(m)

>2n.
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Hence a solution of o*(n) = 2 » is possible only if m = 1, that is, if n = 22, in
which case:

ok(n) = gk—1 (2071 _ 1)
> (h—1)+ (2271 — 1)

The last inequality forces £ to be equal to 2 and 2%+ — 1 to be prime.
To conclude the proof it suffices to note that if p is a Mersenne prime then
(p + 1)/2 satisfies o(o(n)) = 2 n.

Graham Lord, Temple University, Philadelphia, Pennsylvania, U.S.A.
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Aufgaben

Aufgabe 721. The question whether, for an integer » > 1, ¢ (#) | (» — 1) implies
that » is a prime, is open (cf., e.g., American Math. Monthly 80, 192-193 [1973]). Show

that if » = 2*"+ 1 (s > 0) and @ (n) | (n — 1), then » is a prime.
' J. Steinig, Genéve

Solution: We show the more general result that » is a prime whenever # = 1 + ¢

(£ > 0, g prime) and ¢ {n) | (n — 1). (If this is true then we must have g = 2, for other-

wise n is even and » > 2, since { > 0, so n cannot be a prime.) Let n == 1+ ¢ = p& pZs ..
i

pil «; = 1. Clearly, p, + ¢. From the condition g(n) = p&~1 pa=1 ., pu-1 [11 (p; — 1) |

(n — 1) = ¢!, it follows that o; = @y = ... = o, = L and p, = g¢¢ + 1, ¢, > 0. Without
loss of generality p, <Cp, << .-+ << p, and consequently ¢, < ¢, < --- <¢,. If/ > 1 then
9 == Plpz‘--jt’g: 1+ q’*+ qtg B g p o qil+qt,+t,_}_ s v ol qt‘+t2+---+tg
and

1 =gt =g 4 gt - 4 g+ ghth oo 4 ghtlat iz gh (mod ghtY)
a contradiction.

Apparently [ = 1, f = {, and n = $,.
O. P. Lossers, Eindhoven, The Netherlands

Weitere Losungen sandten A. Bager (Hjerring, Dinemark), E. P. Bauhoff
(Mannheim, BRD), C. Bindschedler (Kiisnacht, ZH), O. Buggisch (Darmstadt, BRD),
P. Bundschuh (K6In, BRD), L. Carlitz (Durham, N.C., USA), J. Fehér (Pécs, Ungarn),
L. Himmerling (Aachen, BRD), H. Harborth (Braunschweig, BRD), H. Kappus
(Rodersdorf, SO), P. Kiss (Eger, Ungarn), A. Marshall {Madison, Wisconsin, USA),
Chr. A. Meyer (Bern), H. Miiller (Berlin), R. Shantaram (Flint, Michigan, USA),
M. Vowe (Therwil, BL) und R. Wyss (Flumenthal, SO).
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