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Über die Anzahl der inkongruenten ebenen Netze des Würfels
und des regulären Oktaeders

Will man aus steifem Papier einen Würfel herstellen, dann kann man aus dem

genannten Material 6 kongruente Quadrate ausschneiden und diese auf geeignete
Weise zusammenkleben. Jede Würfelkante ist dann eine Klebekante. Nimmt man
anstelle der 6 Einzelquadrate ein ebenes Netz des Würfels, dann sind nur 7

Klebekanten erforderlich. Ein ebenes Netz des Würfels besteht aus 6 kongruenten
Quadraten, die auf zulässige Weise an 5 Seiten zusammenhängen. Beim Netz in der

Figur 1 sind die 5 Quadratseiten, die den Zusammenhang gewährleisten, durch
unterbrochene Linien gekennzeichnet.

Figur 1

Durch das Beiwort zulässig wurde bereits zum Ausdruck gebracht, dass 6
Quadrate, die über 5 Seitenkanten zusammenhängen, nicht immer ein Würfelnetz
darstellen. Wie man leicht bestätigt, sind zum Beispiel die beiden Anordnungen in der
Figur 2 keine Würfelnetze.

Figur 2
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Die folgenden Untersuchungen gelten der Frage nach der Anzahl der
inkongruenten ebenen Netze bei einem Würfel und bei einem regulären Oktaeder. Wir
werden uns bei der Lösung dieses Problems aus der abzählenden Kombinatorik
graphentheoretischer und gruppentheoretischer Hilfsmittel bedienen. Dieses
Zusammenspiel verschiedener Theorien bei der Lösung einer Aufgabe, die man
zunächst eher der Elementarmathematik zuweisen möchte, macht die Diskussion
besonders reizvoll.

Würfel und Oktaeder sind bekanntlich duale Polyeder. Diese Beziehung ist der
tiefere Grund dafür, dass die beiden Polyeder miteinander untersucht werden.
Zunächst wird sich herausstellen, dass die Anzahl der inkongruenten ebenen Netze
beim Würfel und beim Oktaeder dieselbe ist. Die Dualität wird uns aber zugleich
auch erlauben, bei einzelnen Überlegungen das jeweils einfacher traktable Polyeder
heranzuziehen.

1. Die Gewinnung eines ebenen Netzes

Wir wollen uns vorerst auf den Würfel festlegen. Um eine Übersicht über die
vorhandenen ebenen Netze zu erhalten, gehen wir vom bereits erwähnten Modell
des Würfels aus; wir denken uns einen Würfel, der aus steifem Papier angefertigt ist.
Man kann daraus leicht zu einem ebenen Netz des Polyeders gelangen, indem man
die Fläche entlang geeigneter Kanten aufschneidet und hernach in die Ebene
ausbreitet. Zur exakten Beschreibung dieses Vorganges bedienen wir uns nun der
graphentheoretischen Terminologie. Die 8 Eckpunkte und die 12 Kanten des Würfels
machen zusammen einen Graphen aus; wir nennen ihn den Eckpunkt-Kanten-
Graphen des Würfels und bezeichnen ihn mit <5w- Es handelt sich um einen schlichten

regulären Graphen 3. Ordnung.
Jeder zu (Sw isomorphe Graph heisst ein Würfel-Graph. In der Figur 3 ist ein

überschneidungsfreier Würfel-Graph in der Ebene aufgezeichnet.

r^^
k_ _j Figur 3

Wir markieren uns jetzt im Graphen ©jy die Kanten, in denen bei der Gewinnung

eines ebenen Netzes die Fläche aufgeschnitten werden soll und bezeichnen sie

als Schnitt-Kanten. Die Figur 4 zeigt ein System von Schnitt-Kanten, aus dem das
daneben gezeichnete ebene Netz hervorgeht. Wir wollen verabreden, dass die Netze
stets so in die Ebene abgelegt werden, dass die Papier-Oberseite der Aussenseite des

Würfels entspricht. Man kann sich die Aussenseite des Würfels leicht merken, wenn
man Papier benutzt, das nicht beidseitig gleich gefärbt ist.

Es ist klar, dass jede Würfelecke mit einer Schnitt-Kante inzident ist. Wäre
dies nicht der Fall, dann liesse sich die aufgeschnittene Fläche nicht in die Ebene
ausbreiten. Die Eckpunkte des Würfels und die Schnitt-Kanten bilden zusammen
einen Teil-Graphen Sjr von <5w- Der Graph Qw enthält sicher keine Kreise; andernfalls

würde die Fläche nach dem Aufschneiden zerfallen. Aus der Tatsache, dass die
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Figur 4

ebenen Netze eines Polyeders zusammenhängend sind, folgt zugleich noch, dass der
Teil-Graph Qw zusammenhängend ist. Qw ist also ein zusammenhängender und
kreisloser Teil-Graph von (5w, der sämtliche Knoten (Eckpunkte des Würfels) von
©n? enthält. Durch diese Eigenschaften sind die Gerüste eines Graphen gekennzeichnet.

Die Graphentheorie lehrt, dass die Gerüste eines Graphen mit n Knoten genau
m-1 Kanten aufweisen. Da (Sw 8 Knoten umfasst, besitzen seine Gerüste genau
7 Kanten. In der Figur 5 sind 5 verschiedene Gerüste eines Würfel-Graphen
festgehalten.

N=7' XZ7T

k_ M ^
Kzy
kr__M

Figur 5

Die Frage nach der Anzahl der verschiedenen ebenen Netze bei einem Würfel
läuft jetzt darauf hinaus, die Anzahl der inkongruenten Gerüste auf dem Eckpunkt-
Kanten-Graphen ®w zu bestimmen. Genau besehen heisst dies folgendes. Durch die
Identifikation von Gerüsten auf (5w, die bei einer Drehung des Würfels in sich
auseinander hervorgehen, wird auf der Menge der Gerüste von ©j^ eine Äquivalenzrelation

definiert. Die zugehörigen Äquivalenzklassen liefern dann die verschiedenen
ebenen Netze des Würfels. Man kann daher auch diese Äquivalenzklassen als die
massgebenden kombinatorischen Figuren ansehen.

Bevor wir die Abzahlung der genannten Äquivalenzklassen durchführen,
wollen wir noch die Beziehung zur entsprechenden Aufgabe beim regulären Oktaeder
herstellen.

Man kann für das reguläre Oktaeder die analogen Überlegungen anstellen und
stellt dabei fest, dass die ebenen Netze in gleicher Weise aus den Gerüsten des

Eckpunkt-Kanten-Graphen hervorgehen. Wir bezeichnen den Eckpunkt-Kanten-
Graphen des regulären Oktaeders im folgenden mit ©o-

Die Gerüste von ®w und ©o hängen aufgrund der dualen Verwandtschaft von
Würfel und Oktaeder eng miteinander zusammen. Diese Dualität äussert sich etwa
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darin, dass die Seitenflächen-Mittelpunkte eines Würfels die Eckpunkte eines regulären

Oktaeders sind, und umgekehrt.
Jede Drehung, die eines der beiden Polyeder in der Figur 6 in sich selbst überführt,

lässt auch das andere Polyeder invariant. Die Gruppe der Drehungen, die den Würfel
fest lassen, ist daher identisch mit der Gruppe der Drehungen, die das Oktaeder in
sich transformieren. Wir nennen sie die Hexaeder-Gruppe, womit dem Würfel ein
gewisser Vorzug gegeben ist.

A .«. A
#c

/' %' y

r___F7

--*4--U-
/1± / // /

Figur 6 Figur 7

Wir denken uns jetzt die Eckpunkt-Kanten-Graphen der beiden Polyeder in
der Figur 6 vom Punkt M aus auf eine Kugel mit dem Mittelpunkt M projiziert und
anschliessend die Bild-Graphen auf der Kugel topologisch auf die konforme Ebene
abgebildet. Diese Überlegung führt auf einen Würfel-Graphen ©V und einen
Oktaeder-Graphen ©o in einer gegenseitigen Verkuppelung gemäss Fig. 7. Man spricht
in diesem Falle von zwei dualen ebenen Graphen1). Duale ebene Graphen haben
gleichviele Kanten. Ferner ist die Anzahl der Knoten des einen gleich der Anzahl
der Gebiete, in welche die Ebene durch den andern Graphen zerlegt wird.

Jede Kante von (g>w schneidet genau eine Kante von ©o und umgekehrt. Aus
dieser Eigenschaft geht eine natürliche Paarung zwischen den Kanten der beiden
Graphen hervor. Wir wollen nun daraus eine Paarung zwischen den Gerüsten von
©n/ und ©o konstruieren. Ist eine solche nachgewiesen, dann ist damit gezeigt, dass
©ht und ©o gleichviele Gerüste besitzen.

Es sei Qw irgend ein Gerüst von © w Die dualen Bilder jener Kanten von ®w,
die in Qw nicht vorkommen, führen auf einen Teil-Graphen So von ©o- Dieser
Graph So ist stets ein Gerüst von ©o- Bevor wir den Beweis antreten, sei diese
Konstruktion noch an einem Beispiel veranschaulicht (Fig. 8).

Figur 8

l) Jeder in die Ebene eingebettete Graph, bei dem keine Kantenüberschneidungen vorhanden
sind, heisst ein ebener Graph.
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Dass So ein Gerüst ist, kann man wie folgt einsehen. Da Sjr keine Kreise
enthält, ist So ein zusammenhängender Graph, der sämtliche Knoten von ©0 umfasst.
Qw hat 7 Kanten, So infolgedessen 5 Kanten. Ein zusammenhängender Graph mit
6 Knoten und 5 Kanten ist aber notwendigerweise ein Baum, im vorliegenden Falle
also ein Gerüst von ©o-

Die bisherigen Ergebnisse lassen sich in der folgenden Aussage zusammenfassen:

Die Anzahl der inkongruenten ebenen Netze beim Würfel und beim regulären
Oktaeder ist dieselbe. Sie stimmt überein mit der Anzahl der inäquivalenten Gerüste von
(5w oder ©o in bezug auf die Hexaeder-Gruppe.

2. Die inäquivalenten Gerüste auf (5W und ©0 in bezug auf die Hexaeder-
Gruppe

Aus Gründen, die sich alsbald abzeichnen werden, wollen wir jetzt dem Oktaeder
den Vortritt lassen.

Die Hexaeder-Gruppe induziert auf der Menge G0 der Gerüste von ©0 eine
Permutationsgruppe §„ [H0; ¦>]. Die inäquivalenten Gerüste von G0 in bezug auf
die Hexaeder-Gruppe werden repräsentiert durch die Transitivitätsbereiche, welche
diese Permutationsgruppe auf der Menge Go hervorruft. Sie werden in der neueren
Kombinatorik auch als die Muster auf Go bezüglich der Gruppe §0 bezeichnet.

Aufgrund des sogenannten Lemmas von Burnside2) beträgt die Anzahl der
Transitivitätsbereiche bei einer Permutationsgruppe ^ß [P; °]

m i
MP) ÄxH

fi(P) ist die Ordnung der Gruppe ^8 (Mächtigkeit der Menge P). #(a>) bezeichnet den
Charakter der Permutation co e P; dies ist die Anzahl der Objekte, die bei der
Permutation co festbleiben. Die Summe ist zu erstrecken über alle Permutationen der
Gruppe ^8.

Die Anwendung dieses gruppentheoretischen Abzählverfahrens setzt eine
Aufzählung der Hexaeder-Gruppe voraus. Diese umfasst

die Identität
6 Drehungen um 2zählige Achsen (Beispiel: Achse a)
8 Drehungen um 3zählige Achsen (Beispiel: Achse b)
9 Drehungen um 4zählige Achsen (Beispiel: Achse c)

Die Gruppe hat somit die Ordnung 24.

Es sei nun
Za die 180°-Drehung um die Achse a

Ab eine 120°-Drehung um die Achse b

Ac eine 90°-Drehung um die Achse c

Zc die 180°-Drehung um die Achse c. Figur 9

\b

\ /
-O

2) Vgl. [1], [2] und [3]
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Wir bezeichnen jetzt mit s die identische Permutation auf der Menge G0 und
mit o-a, öb, 6C, ac die Permutationen auf G0, die aus den Drehungen Ea, Ab, Ac und Sc
abgeleitet sind. Dann gilt offenbar

'(So) -24; (Z(e) + 6ZW + 8„(^) + 6X(ÖC) + 3 X(ac)).

Aus gleichartigen Drehungen entstehen nämlich Permutationen mit denselben
Charakteren.

Bestimmung von %(e)

Die Permutation e lässt sämtliche Gerüste von ©0 fest; #(_) ist also die Anzahl
der Gerüste von ®0. Für die Berechnung der Zahl %(e) ziehen wir das Theorem von
Kirchhoff-Trent heran3). Um dieses formulieren zu können, benötigen wir die
sogenannte Admittanz-Matrix eines Graphen ©. Hat © die Knoten Px, P2, Pn,
dann sei gt die Ordnung des Knotens P„ und vtJ bezeichne die Anzahl der
Verbindungskanten von P, mit P} (allfällig vorhandene Schlingen werden sowohl für gt als
auch für _„ doppelt gezählt). Ist weiter 6l} das Kronecker-Symbol, dann heisst die
symmetrische n x «-Matrix A mit den Elementen

% K e, - %
die Admittanz-Matrix des Graphen ©. Es sei jetzt weiter A, die Matrix, die aus A
hervorgeht, wenn man dort die i-te Zeile und die i-te Kolonne herausstreicht. Das
Theorem von Kirchhoff-Trent besagt, dass det A, unabhängig von der Zahl i ist und
dass dieser Wert die Anzahl der Gerüste von © darstellt.

Zum Eckpunkt-Kanten-Graphen ®0 gehört bei geeigneter Numerierung der
Knoten die Admittanz-Matrix

1 -1

1 -1
1 -1 -1

-1

-1
-1

Streicht man in A die 6. Zeile und die 6. Kolonne, so verbleibt die Matrix

A6=\ 0-1 4-1-1

Man findet det A6 384; der Graph ©0 hat also 384 verschiedene Gerüste.
Der Graph ©^ hat 8 Knoten; seine Admittanz-Matrix ist daher eine 8x8-

Matrix, was die Berechnung der Gerüst-Anzahl etwas aufwendiger macht. Damit
erklärt sich jetzt die Bevorzugung des Oktaeders.

Bestimmung von %(aj
X(aa) ist die Anzahl der Gerüste von ®0, die bei der Permutation aa invariant

bleiben. Da ein Gerüst 5 Kanten hat, muss ein bei aa festbleibendes Gerüst eine

3) Vgl. [4]
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Kante enthalten, deren Mittelpunkt auf a liegt. Es gibt offenbar 8 bezüglich aa
invariante Gerüste mit der Kante PXP2; sie sind in der Figur 10 aufgeführt. Daneben
gibt es noch ebensoviele bei aa invariante Gerüste mit der Kante PaPt, so dass

X(aa) 16 ist.

Figur 10

Bestimmung von %(db), %(dc) und %(ac)

Eine 120°-Drehung des Oktaeders in sich induziert auf der Menge der Kanten
von ©o eine Permutation mit lauter Zyklen der Länge 3. Da ein Gerüst 5 Kanten
aufweist, kann hierbei kein Gerüst fest bleiben; es ist also %(db) 0.

Aus einer 90°-Drehung geht in gleicher Weise eine Permutation mit lauter Vierer-
Zyklen hervor, so dass auch %(dc) 0 ist.

Schliesslich gehört zur 180°-Drehung mit der Achse c eine Permutation auf der
Menge der Kanten von ©0 mit 4 Zyklen der Länge 2, was wiederum ausschliesst,
dass ein Gerüst in sich selbst übergeht. Daraus folgt, dass ebenso %(oc) 0 ist.

Mit dem Lemma von Burnside erhält man nun für die Anzahl der Gerüste von ©o

<(So) ^(384+ 6.16) 20.

Damit steht jetzt das folgende Ergebnis fest:

Bei Verwendung von Papier mit unterscheidbaren Seiten gibt es beim Würfel und
beim regulären Oktaeder je 20 inkongruente ebene Netze.

Es sei nochmals darauf hingewiesen, dass die beiden Seiten eines Papiers durch
verschiedene Färbung unterscheidbar gemacht werden können. Benutzt man
beidseitig gleich gefärbtes Papier, dann sind von den 20 festgestellten Netzen einige
Paare zu identifizieren. Ein solches Paar besteht aus zwei Netzen, die durch eine

Umwendung auseinander hervorgehen. Die Figur 11 zeigt ein solches Paar für den
Würfel.

Figur 11
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3. Die Muster in bezug auf die volle Symmetrie-Gruppe von Würfel und
Oktaeder

Man kann direkt zu den neuen Äquivalenzklassen gelangen, wenn man an die
Stelle der Hexaeder-Gruppe die volle Symmetrie-Gruppe des Würfels treten lässt.
Zur Hexaeder-Gruppe sind dann noch 24 ungleichsinnige Kongruenz-Transformationen

zu adjungieren, nämlich die Spiegelung am Mittelpunkt des Würfels, 14 Dreh-
Spiegelungen und 9 Ebenen-Spiegelungen. Mit ähnlichen Überlegungen wie im Falle
der gleichsinnigen Kongruenzen lässt sich zeigen, dass nur für die 3 Spiegelungen an
den Diagonalebenen des Oktaeders (für den Würfel sind dies die Mittelparallelebenen
zu diametralen Seitenflächen; vgl. Fig. 6) invariante Gerüste von ®o vorhanden
sind. Ist Za die Spiegelung an der Diagonalebene oc und aa die zugehörige Permutation

auf der Menge der Gerüste von ©0, dann ist £(__) 16. Man kann dies mühelos
der Figur 12 entnehmen, in der ein bei aa invariantes Gerüst herausgehoben ist.

Figur 12

Die Anzahl der Muster beträgt somit bei Zugrundelegung der vollen Symmetrie-
Gruppe

*Ö0o)
Tg (384 + 6.16 + 3.16) 11

In den Figuren 13 und 14 sind die 11 inkongruenten Gerüste von ©0 und die
dazugehörenden ebenen Netze des regulären Oktaeders zusammengestellt.

_5 5 5 5 5

© ® © ©

© © ©

Zusammenhängst/pus
der Gerüste

>~<

©© © ©
© © @

©

®

®
Figur 13
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Ein Vergleich der Winkel zwischen den betreffenden Oktaeder-Kanten bei den
Gerüsten vom gleichen Zusammenhangstypus zeigt, dass tatsächlich 11 inkongruente
Gerüste vorliegen.

2 6 3 4 1

5 2
5ft »3

© ©
1 2 G 4 1

\I \2 2 6

&M b 3
4 .6

5_ _3

0 1 2 6

2 6

1 2 6

Irf— -2

6 3

4 1

2 © 2 6/ \/3

5 „2

4 1 / © 1 2

5Ä *>3

2. ,6

4 6

©

1 2

4

®
1 2

Figur 14

Die beiden Netze mit den Nummern 6 und 8 weisen eine Symmetrieachse auf.
Beim Umwenden der übrigen 9 Netze erhält man 9 neue Figuren, die zusammen mit
den vorhandenen 11 Netzen die 20 Netz-Klassen repräsentieren, die bei Verwendung
von Papier mit unterscheidbaren Seiten auftreten.
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Die Aufzählung der 11 inkongruenten Netze des Würfels bei beidseitig gleich
gefärbtem Papier sei dem Leser überlassen.

Die Reinzeichnungen zu den Figuren hat Herr C. Niederberger hergestellt, wofür
ihm an dieser Stelle herzlich gedankt sei. M. Jeger, Zürich
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Groups and Fields in Zn

It can easily be verified that {2, 4, 6, 8} is a group under multiplication mod 10

with 6 as the identity and that {0, 2,4,6, 8} is a field under addition mod 10 and
multiplication mod 10. The purpose of this paper is to characterize the subsets of Zn which
are groups under multiplication mod n and those which are fields under addition and
multiplication mod n. Some of the results on subgroups of Zn given here are equivalent

to some of the results given by Hewitt and Zuckermann fl], but are of a sub-
stantially different form.

In the following Un {m\ (n, m) 1} will denote the group of units in Zn, <f> will
denote the Euler phi function and a small Roman letter will denote an integer or
the residue class of the integer in Zn; the context will indicate which is intended.

Proposition 1. If n ab and (a,b) 1, then a*(6) is idempotent in Zn.

Proof: a^b) 1 (mod b) by Euler's theorem. Hence, multiplying through by a*(*

we have (a*^)2 _*<»> (mod n) since n ab and (a,b) l. Therefore, (a'6"»)2 am
inZn.

Lemma 1. If (x,n) d and (d,n/d) l, then x du (mod n) where ueUn.
Hence, xed U„.

Proof: Since (d, n/d) 1, there exists a t0 such that x/d + t0njd 1 (mod d). Let
u x/d + t0n/d. Then (u,d) (l,d) =1 and (u,n/d) (x/d,n/d) 1. Hence, (u,n) l
and ue Un. Also, du — x + t0n =x (mod n).

Proposition 2. If (c, n) d and (d, n/d) 1, then cUn d Un.

Proof: By Lemma 1, there is a ueU„ such that c=du (mod n). Hence, cU„
duUn dU„.

Proposition 3. If n „ and (a, b) 1, then a*(6) U„ a Un.

Proof: This follows immediately from Proposition 2 by observing (a^^, n) a
and (a,n/d) (a,b) l.

The following theorem gives a method for constructing subsets of Zn which are
groups. The example in the first paragraph is obtained by taking n 10 and a 2.
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