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56 Kleine Mitteilungen

Nach Gleichung (20) bilden {U} und {V'} gegenliufige projektive Punktreihen in ver-
emigter Lage. Fiir die Gegenpunkte U, und V, der Projektivitit ergeben sich die
Ordinaten

20 (6+m)
Eg =0 bzw. 'r]g == = ““_"““%2 . (21)
Mit Hilfe von (21) erhélt man fiir die Potenz dieser Projektivitiit
k= 3% . (22)
und die Charakteristik der Projektivitit
6+m2—2yG
= it G=94 3m? &,
6L miE2)C mit + 3m® 4 m (23)

Mit den Ergebnissen (21) und (22) ist ein gut iiberschaubarer konstruktiver Zugang
fiir jedes beliebige Punktepaar {U, ¥} und damit auch fiir die Punktepaare {M, K,}
gesichert (vgl. Abb. 6) (vgl. Sonderfall fiir Scheitelpunkte in [3]). Bei Vorgabe eines
Kegelschnittes » (etwa durch dessen Achsen) ist es mit diesen Mitteln méglich, die
Kriimmungsmittelpunkte K, K; und K, zu jedem beliebigen Punkt Pex zu kon-
struieren. Umgekehrt ist auch x» eindeutig konstruierbar, wenn zu einem Punkt
P ¢ die Kriitmmungsmitten K, K, und K, vorgelegt sind.

Eberhard Schroder, Technische Universitit Dresden, DDR
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Kleine Mitteilungen
Zero-divisors in a ring of arithmetic functions

In [1, p. 247], M. V. Subbarao introduced a convolution in the set S of all arith-
metical functions, which he called ‘exponential convolution’ as follows:

(0 ) (1) = a(1) (1),
(x 0 p) (n) = dZ a(pl ... p7) PR pirl
i=1,t2‘,%: e

if «, € S and # > 1 has the canonical representation # = p% . . . p,
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Among other things he proved the following result regarding the zero-divisors
in the ring (S, +, o): '

A necessary condition for « € § to be a non-zero-divisor is that given any finite
number of primes p,, -- -, p,, there exist positive integers a,, a,, - --, a, such that
a(pl - p) + 0. ~

Whether the above condition is also sufficient for a non-zero-divisor was left as
an open question [1, p. 259].

In this note we prove that if «(1) + 0, then the above condition is sufficient for
« to be a non-zero-divisor. This is contained in the following. |

Theorem. If a(1) + 0 and « is a zero-divisor in (S, +, ©), then there exist ﬁrimes
f1 - - -, P, such that a{pf: - - - p3r) = O for all positive integers 4, - - -, a,.

Proof. Let N denote the set of all positive integers. Since « is a zero-divisor,
there exists a in S with § + 0 such that

(xop)(n)=0 forall ne N (A)

Since g + 0, there is an m € N such that f(m) + 0. Since «(1) #(1) = 0 and
«(1} %= 0, we must have (1) = 0. Consequently m > 1. Let

m= Py P
be the canonical representation of m. We now claim that with these #,, - - -, 9,
a(pfr -« pyr) = 0 for all positive integers a,,---, a,. (B)

We suppose that (B) is false and obtain a contradiction. If (B) is false, then the
set

U={(by, ..., 0) e N |a(ph... p*") % O}

1s a non-empty subset of the well-ordered set N” (under the lexicographic ordering)

and hence has the least element say (¢, - - -, ¢,). Write
T={(fu---. [)eN"| B(py ... )"} * O}.
Then since p(p): - - - pI') + 0, it follows that T is a non-empty subset of the well

ordered set N” (again under the lexicographic ordering) and hence has a least element
say (e, - - -, ¢,). Now from (A),

0= (x 0 f) PPe...prn =D alpd...pl) plppal®. . pireddry .

diicieg
2=1,2,..,7

In the above sum terms for which d; < ¢; vanish because of the minimum
character of (¢q, -, c,); similarly terms for which d; > ¢, vanish owing to the minimum
property of (e, - - -, ¢,). Thus we will be left with only terms for which d, = ¢;. Now
clearly the only non-vanishing terms will be corresponding to d, = ¢,. Continuing
this argument, we get from (C) the contradiction

0 = apf ... p27) BS .. P1)
Thus (B) must be true.
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We finally remark that the above theorem need not hold if (1) = O as is shown
by the following example.

Example. Let «, f € S be defined as follows:

0 if n=1
u(n) if n > 1 (u Mébiusfunction)

1 if n=1

Ml o=
Bl { 0 for n>1

ﬂW={

then clearly « o # = 0 so that « is a zero-divisor. But for any finite number of primes

PI: ) Pr:

Py pr) = plpy---p) = (=17 + 0.
A. S. Sastry, Waltair, India
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Aufgaben

Aufgabe 717. Gegeben sei ein Kreis £ mit dem Mittelpunkt M und dem Radius
7. Man beweise: Die Schar aller jener Kreise, deren Mittelpunkte P auf einer Sehne s
von % liegen und deren Radien durch die Potenzstrecke von P beziiglich %

=)~ MP? > 0)
gegeben sind, wird von einer Ellipse eingehiilit. W. Kienberger, Graz, Osterreich

Losung: Wir wihlen ein cartesisches Koordinatensystem (X, Y) mit M als
Ursprung so, dass die Sehne s parallel zur X-Achse ist; ihr Abstand von der X-Achse
sel a. Es sei P = (x, a) €s. Dann gilt MP? = a? + x2. Die Gleichung der Kreislinie
um P mit Radius |/ 72 — MP? ist dann A

JX, Y x) = (X — 22+ (Y —a)2— (12 — a2 — a2) =0, (1)
Die Gleichung der Umbhiillenden von (1) erhilt man durch Auflésung des Gleichungs-
systems

FX, Y %) =0 @

XY, x)=2x—-X)+2x=0, (3)

wobel x als Parameter der betrachteten Schar auftritt,
Aus (3) und (2) mit (1) folgt dann:

2 (%)2+(Y—a)2rrz—a2. , )

Die Umbhiillende ist folglich eine Ellipse.
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