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Nach Gleichung (20) bilden {£/} und {V} gegenläufige projektive Punktreihen in
vereinigter Lage. Für die Gegenpunkte Ug und Vg der Projektivität ergeben sich die
Ordinaten

_ n u 2g(6 + m2)
£g 0 bzw. %=-____ (2i)

Mit Hilfe von (21) erhält man für die Potenz dieser Projektivität
k2 3g2 (22)

und die Charakteristik der Projektivität

s
6 + m2 - 2 ]/Gd=— ; - mit G=9 + 3m2 + mi. (23)6 + m2+ 2yG v '

Mit den Ergebnissen (21) und (22) ist ein gut überschaubarer konstruktiver Zugang
für jedes beliebige Punktepaar {U, V} und damit auch für die Punktepaare {M, K2}
gesichert (vgl. Abb. 6) (vgl. Sonderfall für Scheitelpunkte in [3]). Bei Vorgabe eines
Kegelschnittes x (etwa durch dessen Achsen) ist es mit diesen Mitteln möglich, die
Krümmungsmittelpunkte K, Kx und __2 zu jedem beliebigen Punkt Pex zu
konstruieren. Umgekehrt ist auch x eindeutig konstruierbar, wenn zu einem Punkt
P ex die Krümmungsmitten __, Kx und K2 vorgelegt sind.

Eberhard Schröder, Technische Universität Dresden, DDR
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Kleine Mitteilungen

Zero-divisors in a ring of arithmetic functions

In [1, p. 247], M. V. Subbarao introduced a convolution in the set S of all
arithmetical functions, which he called 'exponential convolution' as follows:

(a o ß) (1) «(1) ß(l),

(a o ß) (n) 27 «(tf • • ¦ Pf) ßWdl ¦ ¦ ¦ P7lir)
di\ai

J-l, 2, r

ii ol, ß e S and n > 1 has the canonical representation n paxl ¦ ¦ ¦ pa/.
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Among other things he proved the following result regarding the zero-divisors
in the ring (S, +, o):

A necessary condition for a _ S to be a non-zero-divisor is that given any finite
number of primes px, ¦ ¦ ¦, pr, there exist positive integers ax, a2, ¦ ¦ ¦, ar such that
«(/.' ¦ • • P7) * o.

Whether the above condition is also sufficient for a non-zero-divisor was left as

an open question [1, p. 259].
In this note we prove that if a(l) =1= 0, then the above condition is sufficient for

ol to be a non-zero-divisor. This is contained in the following.

Theorem. If a(l) 4= 0 and a is a zero-divisor in (S, +, o), then there exist primes
Pi> ' ' ' • Pr such that oi(p\h ¦ ¦ ¦ pa/) — 0 for all positive integers ax, ¦ ¦ ¦, ar.

Proof. Let N denote the set of all positive integers. Since a is a zero-divisor,
there exists a ß in S with ß =t= 0 such that

(ol o ß) (n) 0 for all »eN (A)

Since ß =t= 0, there is an m e N such that ß(m) # 0. Since a(l) ß(l) 0 and

a(l) 4= 0, we must have ß(l) 0. Consequently m > 1. Let

m p\"> • • • p^'
be the canonical representation of m. We now claim that with these px, ¦ ¦ ¦ ,pr:

a(__'' " ' P7) 0 for all positive integers ax, ¦ ¦ ¦, ar. (B)

We suppose that (B) is false and obtain a contradiction. If (B) is false, then the
set

C7 {(-!,..., 6r)e AM «(/_••• ¦_>*,') +0}
is a non-empty subset of the well-ordered set Nr (under the lexicographic ordering)
and hence has the least element say (cx, ¦ ¦ ¦, cr). Write

T {(fx,...,fr)eNr\ß(p'>...p</)+0}.
Then since ß(p[n' ¦ ¦ ¦ p™r) =¥ 0, it follows that T is a non-empty subset of the well
ordered set Nr (again under the lexicographic ordering) and hence has a least element

say (ex, ¦ ¦ ¦, er). Now from (A),

0 (a O ß) (P^ ¦ ¦ ¦ PV'') E *(Pl ' ' ' Pf) ßtä^ ¦ ¦ ¦ Prre,'dr) ¦

di ct ei
»-l,2,..,r

In the above sum terms for which dx < cx vanish because of the minimum
character of (cx, ¦ ¦ ¦ ,cr); similarly terms for which dx > cx vanish owing to the minimum
property of (ex, ¦ ¦ ¦, er). Thus we will be left with only terms for which dx cx. Now
clearly the only non-vanishing terms will be corresponding to d2 c2. Continuing
this argument, we get from (C) the contradiction

0 a(tf... #')/*(# ••¦#')•
Thus (B) must be true.
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We finally remark that the above theorem need not hold if <x(l) 0 as is shown
by the following example.

Example. Let ol, ß e S be defined as follows:

f 0 if »= 1 f 1 if «= 1
«M \ ß(n) J

[ß(n) if n > 1 (n Möbiusfunction) [0 for n>l
then clearly a o ß 0 so that a is a zero-divisor. But for any finite number of primes
Pv '.Pr.

*(fil---pr)=P<Pl---pr)=(-lY + 0.
A. S. Sastry, Waltair, India

REFERENCE

[1] M. V. Subbarao, On some arithmetic convolutions, Lecture notes in Mathematics, Vol. 251,
Springer-Verlag, p. 247-271 (1972).

Aufgaben

Aufgabe 717. Gegeben sei ein Kreis k mit dem Mittelpunkt M und dem Radius
r. Man beweise: Die Schar aller jener Kreise, deren Mittelpunkte P auf einer Sehne s

von k liegen und deren Radien durch die Potenzstrecke von P bezüglich k

y r2 - MP2 > 0)

gegeben sind, wird von einer Ellipse eingehüllt. W. Kienberger, Graz, Österreich

Lösung: Wir wählen ein cartesisches Koordinatensystem (X, Y) mit M als
Ursprung so, dass die Sehne s parallel zur X-Achse ist; ihr Abstand von der X-Achse
sei a. Es sei P (x, a) e s. Dann gilt WP2 a2 + x2. Die Gleichung der Kreislinie
um P mit Radius ]/ r2 — MP2 ist dann

/ (X, Y; x) (X- x)2 + (Y - a)2 - (r> - a2 - x2) 0 (1)

Die Gleichung der Umhüllenden von (1) erhält man durch Auflösung des Gleichungssystems

/ (X, Y; x) 0 (2)

fx(X,Y;x) 2{x-X) + 2x 0, (3)

wobei „ als Parameter der betrachteten Schar auftritt.
Aus (3) und (2) mit (1) folgt dann:

2

+ (Y - a)2 r2 - a2. (4)(4)'
Die Umhüllende ist folglich eine Ellipse.
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