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Untersuchungen zu einem hyperoskulierenden
Biischel von Kegelschnitten

Ausgangspunkt der folgenden Untersuchungen ist eine auf K. H. Schellbach
(1843) zurlickgehende und in viele Lehrbilicher der darstellenden Geometrie aufge-
nommene Konstruktion des Kriimmungsmittelpunktes K zu einem Punkt P eines
Kegelschnittes »x bei Vorgabe einer Achse @ und des Mittelpunktes M (Abb. 1), (vgl.
[1]). Diese Konstruktion legt die Aufgabenstellung nahe, aus den vorgegebenen
Punkten K, P und M die Achse a zu ermitteln. Noch allgemeiner kann nach dem
Achsenhiillgebilde des durch die Punkte P und K sowie den gemeinsamen Durch-
messer 4 (Ped) festgelegten hyperoskulierenden Biischels von Kegelschnitten {s}
gefragt werden. Diese Vorgaben sind dquivalent damit, dass die Kegelschnitte von
{x} in P einen gemeinsamen Oskulationskreis und eine gemeinsame Affinnormale d
besitzen. Je zwei nicht zerfallende Kegelschnitte des Biischels berithren sich also in
P von dritter Ordnung. Dabei kann der Mittelpunkt M von x jede beliebige Lage
auf 4 ausser M = P annehmen. Im Fall der Ellipse liegen K und M auf einer Seite
der durch P gehenden Tangente ¢; im Fall der Hyperbel werden K und M von £ ge-
trennt.

Fiir die folgenden Rechnungen werde P in den Ursprung eines kartesischen
Koordinatensystems gelegt. Dabei deckt sich die Tangente mit der x-Achse, die

Abb. 1

Normale mit der y-Achse. Ohne Beschrinkung der Allgemeinheit kann vorausgesetzt
werden, dass fiir den Radius ¢ des Kriitmmungskreises g > 0 und fiir den Anstieg m
des gemeinsamen Durchmessers m = tan ¢ > 0 gilt. Ferner bietet sich aus der Schell-
bachschen Konstruktion an, die orientierte Strecke RS = w als Biischelparameter ein-
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zufithren. Dann besteht zwischen den Wertebereichen von # und den Arten von
Kegelschnitten offensichtlich folgende Zuordnung:
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Abb. 2

Aus Abb.2 ist mit den oben eingefiihrten Grossen folgende Gleichung fiir die
Achse a abzulesen: '

ux + (um—p)y+ ump — um) =0, (1)

Durchléuft « den Wertebereich (— oo, o0), so ergibt sich eine Schar von Achsen {a},
deren Hiillgebilde sich durch elementare Zwischenrechnung finden lisst. Man erhiilt:

(x+my)2+mp(2x —2my + mp) =0, © (2

Die eine Schar der zu {x} gehérigen Achsen {a} umhiillt die durch Gleichung (2) be-
schriebene Parabel 7. Sie soll im folgenden als Achsenhiillparabel bezeichnet werden.

Die Achsenhiillparabel beriihrt die x-Achse (Tangente) im Punkt J(— om, 0) und
die y-Achse (Normale) im Kriimmungsmittelpunkt K(0, p). Ihre Achse steht senk-
recht auf dem gemeinsamen Durchmesser 4. Die Gleichungen der von der Fernge-
raden verschiedenen Tangenten aus den absoluten Kreispunkten I £(0:1:2) und
Iy(0:1: —%) an 7z, lauten:

zl...ymzx+—1-—;£nm§(m+z), (3)

12...y=-—1,x~§~—1;~g;£(m——i). (4)
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Diese Tangenten sind zugleich die Minimalgeraden durch den Brennpunkt F, der
Achsenhiillparabel 7;. Aus (3) und (4) resultieren die Brennpunktkoordinaten

om om?
(-7, &7 ).
"( 1+m2’ 1+m2) 5)

Féllt man von dem Kriimmungsmittelpunkt K das Lot auf den Durchmesser d, er-
gibt sich der Lotfusspunkt L mit den Koordinaten

em gm?
Nach (5) und (6) liegen L und F, spiegelbildlich beziiglich der Normalen # durch P
und es gilt

|KE,|={KL]|. (7)

Aus (7) folgt, dass der den Kegelschnitten von {»} gemeinsame Durchmesser d die
Leitgerade der Achsenhiillparabel &, ist. Da sich ferner die Achsen 4 und &’ von
jedem Kegelschnitt aus {»} in M senkrecht schneiden und M e d gilt, ist auf Grund
einer bekannten Parabeleigenschaft das Hiillgebilde der Schar von Achsen {a’} iden-
tisch mit dem Hiillgebilde von {a}. Folglich gilt der Satz:

Die Menge der Achsen eines hyperoskulierenden Kegelschnittbiichels {»} um-
hiillen eine Parabe] (Achsenhiillparabel). Die Achse der in dem Biischel enthaltenen
Parabel ist die Scheiteltangente, und der den Kegelschnitten von {x} gemeinsame
Durchmesser ist die Leitgerade der Achsenhiillparabel. Féllt man vom Mittelpunkt
des Oskulationskreises das Lot auf den gemeinsamen Durchmesser und spiegelt den
erhaltenen Lotfusspunkt an der Normalen, so ergibt sich der Brennpunkt der Achsen-
hiillparabel (Abb. 3).

Bemerkenswert ist an dieser Stelle ein von Jakob Steiner aufgestellter Satz. Er
lautet: Diejenige Parabel, welche die zu einem beliebigen Punkt P des Kegelschnittes
% gehorende Tangente und Normale und ausserdem (fiir Ellipse und Hyperbel) deren
Achsen beriihrt, beziehungsweise (bei der Parabel) die Achse zur Scheiteltangente
hat, beriithrt die Normale in dem zu P gehorigen Kriimmungsmittelpunkt.

Daraus lassen sich, wie C. Pelz gezeigt hat, die zahlreichen bekannten Konstruk-
tionen von Kriimmungsmittelpunkten zu beliebigen Punkten von Kegelschnitten
ableiten. Der Satz sagt jedoch nichts iiber den Berithrungspunkt der Tangente des
Kegelschnittes mit der Parabel aus. Er ldsst somit nicht den Schluss zu, dass diese
Parabel das Achsenhiillgebilde eines hyperoskulierenden Kegelschnittbiischels ist.

Das hier gefundene Ergebnis soll auf die Konstruktion der Achsen eines Kegel-
schnittes » angewendet werden, wenn von diesem der Mittelpunkt M, ein Punkt
Pex und der zugehorige Kriimmungsmittelpunkt K gegeben sind.

Von K fillt man das Lot auf den Durchmesser d = (M P) und spiegelt den Lot-
fusspunkt L an #. Damit liegen Brennpunkt und Leitgerade der Achsenhiillparabel
vor. Nun zieht man durch F, eine Parallele zu 4 und schligt um F, einen Kreis mit
dem Radius ¢ = | M F, |. Dieser schneidet die Parallele zu 4 in den Punkten I und I1.
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Abb. 3

Die Verbindungsgeraden a = (M I) und a’ = (M II) stehen aufeinander senkrecht und
beriihren nach bekannten Sitzen die Parabel ,. Sie sind demnach die Achsen des
durch B, M und K bestimmten Kegelschnittes » (Abb. 4).

Abb. 4
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In diesem Zusammenhang sind zwei weitere Parabeln von Interesse. Die dem
Biischel {»} angehoérende Parabel hat die Gleichung

(mx—y)?— 2m2py=0. (8)

Die Achse dieser Parabel &, fillt mit der Scheiteltangente von 7, zusammen. Fiir die
Koordinaten des Brennpunktes findet man wie oben

om pm?
E‘(Hz(umz)’ 2(1+m2))' ©)

Ein Vergleich von (9) mit (5) zeigt, dass F, der Halbierungspunkt der Strecke PF,
ist.

Die Frage nach dem geometrischen Ort der Endpunkte der in bezug auf d kon-
jugierten Durchmesser aller in {»} enthaltenen Ellipsen fithrt auf eine weitere Parabel
n, mit der Gleichung

(mx — y)2 —pm?y = 0. (10)

Ihre Achse ist die Mittellinie der Leitgeraden 4 und der Scheiteltangente s von x,,
und ihr Brennpunkt F, ist Halbierungspunkt der Strecke PF, (vgl. Abbildung 3).
Das oben gefundene Ergebnis soll noch dazu ausgewertet werden, Haupt- und
Nebenachse einer Ellipse aus einem Paar konjugierter Durchmesser konstruktiv zu
finden.
Die Gleichung einer Ellipse aus dem hier betrachteten Biischel {x} hat die all-
gemeine Form

Ax*+2Bxy+ Cy*+ 2Dy =0 mit AC- B*>0. (11)
Ohne Beschrinkung der Allgemeinheit kann angenommen werden, dass A > 0 gilt,

Dann folgt B <0, C >0, D <0 (vgl. Abb. 2).
Fiir die Liangen der konjugierten Halbmesser findet man

DyA2+ B? D
e M = = 2 (12)

|PM| = —

und fiir den Kriimmungsradius bzw. Durchmesseranstieg

D A 13)
= — Z’ Hie == B ? ’ (
"
Wegen | PE,|=p w]/w;ff{»-?nz folgt mit |PM|=p, |QM| = q und | PF,| = r aus
{11)—(13) die Gleichung
¥l gt (14)

Mit (14) ist ein konstruktiv wenig aufwendiger Zugang zum Brennpunkt F, der
Achsenhiillparabel auch bei dieser Vorgabe gesichert.

Abbildung 5 zeigt eine Moglichkeit, wie aus den konjugierten Durchmessern
von » unter Einsatz der Achsenhiillparabel Haupt- und Nebenachse von » konstruk-
tiv gefunden werden kénnen.
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I

Im Vergleich zur Rytzschen Konstruktion bietet dieser Losungsweg vor allem
dann den Vorteil grosserer konstruktiver Sicherheit und Genauigkeit, wenn die kon-
jugierten Durchmesser annidhernd gleich lang sind und sich unter einem nur wenig
von /2 abweichenden Winkel schneiden. In jedem Fall liegen die zum Einsatz ge-
langenden Konstruktionselemente nach dieser Methode weiter auseinander, ohne
dass bei Ausfiihrung der Konstruktion der Rahmen des Bildes gesprengt werden
muss.

Abschliessend sollen in die Betrachtung des hyperoskulierenden Kegelschnitt-
biischels {»} die Kriimmungsmittelpunkte K, und K, der ersten und zweiten Evolute
beziiglich P einbezogen werden. Spiegelt man die Affinnormale d an der Normalen #
und bringt diese Gerade mit der Parallelen zur Tangente durch K zum Schnitt, er-
gibt sich ein Punkt H. Wird die Strecke KH iiber H hinaus noch zweimal auf der
Parallelen abgetragen, so fithrt diese Konstruktion bekanntlich auf den Kriimmungs-
mittelpunkt K, der ersten Evolute (vgl. [2]). Es gilt demnach

3
ry = mﬂ% (15)

Fiir den Anstieg m, der Affinnormalen der ersten Evolute findet man

_ mlo—um)+u(dum—>5p)

my = (16)

3um (o — um)

Nach den gleichen Uberlegungen wie oben resultiert daraus fiir die Koordinaten des
Kriimmungsmittelpunktes K, der zweiten Evolute

30 3p 12\ . um (um —p)
_ 2.~ t - g 17
£ (a2 a)) mit W wlirmt)—em )
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Der Mittelpunkt M von x (Schnittpunkt von a und ) hat die Koordinaten
M(w, mw) . (18)

Fiihrt man M und K, mit Hilfe von Parallelen zur x-Achse auf die y-Achse, ergeben
sich die Punkte U bzw. V. Durchliuft M die Gerade 4, so wird auch K, auf der Ge-
raden mit der Gleichung x == — 3p/m seine Lage in bestimmter Weise variieren. Dem-
nach hat man auf der y-Achse zwei Punktreihen {U} und {V} in vereinigter Lage.
Zur analytischen Behandlung der geometrischen Verwandtschaft setzt man fiir die
Ordinaten von U und V die Variablen & bzw. 5 (Abb. 6). Es gilt nach (17) und (18)

om=e (22 2 12). o

Durch Eliminieren von w=w(«) aus (19) erhilt man fiir die geometrische Punkt-
verwandtschaft folgende Gleichung:

m2En + 20 (6 + m2) £ — 3mgt=0. (20)
y
M
P z
7
Pty 5

i) |
n
d
o
L
[ -

| %
N ,
K, Vip)

> Vg,

Abb. 6
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Nach Gleichung (20) bilden {U} und {V'} gegenliufige projektive Punktreihen in ver-
emigter Lage. Fiir die Gegenpunkte U, und V, der Projektivitit ergeben sich die
Ordinaten

20 (6+m)
Eg =0 bzw. 'r]g == = ““_"““%2 . (21)
Mit Hilfe von (21) erhélt man fiir die Potenz dieser Projektivitiit
k= 3% . (22)
und die Charakteristik der Projektivitit
6+m2—2yG
= it G=94 3m? &,
6L miE2)C mit + 3m® 4 m (23)

Mit den Ergebnissen (21) und (22) ist ein gut iiberschaubarer konstruktiver Zugang
fiir jedes beliebige Punktepaar {U, ¥} und damit auch fiir die Punktepaare {M, K,}
gesichert (vgl. Abb. 6) (vgl. Sonderfall fiir Scheitelpunkte in [3]). Bei Vorgabe eines
Kegelschnittes » (etwa durch dessen Achsen) ist es mit diesen Mitteln méglich, die
Kriimmungsmittelpunkte K, K; und K, zu jedem beliebigen Punkt Pex zu kon-
struieren. Umgekehrt ist auch x» eindeutig konstruierbar, wenn zu einem Punkt
P ¢ die Kriitmmungsmitten K, K, und K, vorgelegt sind.

Eberhard Schroder, Technische Universitit Dresden, DDR
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Kleine Mitteilungen
Zero-divisors in a ring of arithmetic functions

In [1, p. 247], M. V. Subbarao introduced a convolution in the set S of all arith-
metical functions, which he called ‘exponential convolution’ as follows:

(0 ) (1) = a(1) (1),
(x 0 p) (n) = dZ a(pl ... p7) PR pirl
i=1,t2‘,%: e

if «, € S and # > 1 has the canonical representation # = p% . . . p,
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