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Untersuchungen zu einem hyperoskulierenden
Büschel von Kegelschnitten

Ausgangspunkt der folgenden Untersuchungen ist eine auf K. H. Schellbach
(1843) zurückgehende und in viele Lehrbücher der darstellenden Geometrie
aufgenommene Konstruktion des Krümmungsmittelpunktes K zu einem Punkt P eines
Kegelschnittes x bei Vorgabe einer Achse a und des Mittelpunktes M (Abb. 1), (vgl.
[1]). Diese Konstruktion legt die Aufgabenstellung nahe, aus den vorgegebenen
Punkten K, P und M die Achse a zu ermitteln. Noch allgemeiner kann nach dem
Achsenhüllgebilde des durch die Punkte P und K sowie den gemeinsamen Durchmesser

d (Ped) festgelegten hyperoskulierenden Büschels von Kegelschnitten {x}
gefragt werden. Diese Vorgaben sind äquivalent damit, dass die Kegelschnitte von
{x} in P einen gemeinsamen Oskulationskreis und eine gemeinsame Affinnormale d
besitzen. Je zwei nicht zerfallende Kegelschnitte des Büschels berühren sich also in
P von dritter Ordnung. Dabei kann der Mittelpunkt M von x jede beliebige Lage
auf d ausser M P annehmen. Im Fall der Ellipse liegen K und M auf einer Seite
der durch P gehenden Tangente t; im Fall der Hyperbel werden K und M von t
getrennt.

Für die folgenden Rechnungen werde P in den Ursprung eines kartesischen
Koordinatensystems gelegt. Dabei deckt sich die Tangente mit der „-Achse, die

Abb. 1

Normale mit der y-Achse. Ohne Beschränkung der Allgemeinheit kann vorausgesetzt
werden, dass für den Radius q des Krümmungskreises q > 0 und für den Anstieg m
des gemeinsamen Durchmessers m tan <p > 0 gilt. Ferner bietet sich aus der Schell-
bachschen Konstruktion an, die orientierte Strecke RS u als Büschelparameter ein-
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zuführen. Dann besteht zwischen den Wertebereichen von u und den Arten von
Kegelschnitten offensichtlich folgende Zuordnung:

— oo < u < 0

u 0

Hyperbel

Zerfall

gm0 <u <-*'"- Ellipse
n.2 J- 1 r

gm
m2+l

Parabel

gm p
„ - ,- < u < — Hyperbeln'+l m

u - - Zerfall
m

< u < oo Ellipse

Abb. 2

Aus Abb. 2 ist mit den oben eingeführten Grössen folgende Gleichung für die
Achse a abzulesen:

ux + (um — g)y + um (g — um) 0 (1)

Durchläuft u den Wertebereich (- oo, oo), so ergibt sich eine Schar von Achsen {«},
deren Hüllgebilde sich durch elementare Zwischenrechnung finden lässt. Man erhält:

(x + my)2 + mg (2x — 2my + mg) 0 (2)

Die eine Schar der zu {x} gehörigen Achsen {«} umhüllt die durch Gleichung (2)
beschriebene Parabel nh. Sie soll im folgenden als Achsenhüllparabel bezeichnet werden.

Die Achsenhüllparabel berührt die „-Achse (Tangente) im Punkt /(- g m, 0) und
die y-Achse (Normale) im Krümmungsmittelpunkt __(0, g). Ihre Achse steht senkrecht

auf dem gemeinsamen Durchmesser d. Die Gleichungen der von der Ferngeraden

verschiedenen Tangenten aus den absoluten Kreispunkten lx(0:l:i) und
-2(0:1: — i) an jth lauten:

1 x +

y=—1X +

mg
1 + m2

mg
1 + m2

(m

(m — i)

(3)

(4)
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Diese Tangenten sind zugleich die Minimalgeraden durch den Brennpunkt Fk der
Achsenhüllparabel nh. Aus (3) und (4) resultieren die Brennpunktkoordinaten

F, (_ _e^ J?™2 \ /S\
\ 1 + m2' 1 + m2)' '

Fällt man von dem Krümmungsmittelpunkt K das Lot auf den Durchmesser d,
ergibt sich der Lotfusspunkt L mit den Koordinaten

dgm gm2

+ m2 1 + m2
(6)

Nach (5) und (6) liegen L und Fh spiegelbildlich bezüglich der Normalen n durch P
und es gilt

\KFh\=\KL\. (7)

Aus (7) folgt, dass der den Kegelschnitten von {x} gemeinsame Durchmesser d die
Leitgerade der Achsenhüllparabel nh ist. Da sich ferner die Achsen a und a' von
jedem Kegelschnitt aus {x} in M senkrecht schneiden und Med gilt, ist auf Grund
einer bekannten Parabeleigenschaft das Hüllgebilde der Schar von Achsen {_'} identisch

mit dem Hüllgebilde von {„}. Folglich gilt der Satz:
Die Menge der Achsen eines hyperoskulierenden Kegelschnittbücheis {x}

umhüllen eine Parabel (Achsenhüllparabel). Die Achse der in dem Büschel enthaltenen
Parabel ist die Scheiteltangente, und der den Kegelschnitten von {x} gemeinsame
Durchmesser ist die Leitgerade der Achsenhüllparabel. Fällt man vom Mittelpunkt
des Oskulationskreises das Lot auf den gemeinsamen Durchmesser und spiegelt den
erhaltenen Lotfusspunkt an der Normalen, so ergibt sich der Brennpunkt der
Achsenhüllparabel (Abb. 3).

Bemerkenswert ist an dieser Stelle ein von Jakob Steiner aufgestellter Satz. Er
lautet: Diejenige Parabel, welche die zu einem beliebigen Punkt P des Kegelschnittes
x gehörende Tangente und Normale und ausserdem (für Ellipse und Hyperbel) deren
Achsen berührt, beziehungsweise (bei der Parabel) die Achse zur Scheiteltangente
hat, berührt die Normale in dem zu P gehörigen Krümmungsmittelpunkt.

Daraus lassen sich, wie C. Pelz gezeigt hat, die zahlreichen bekannten Konstruktionen

von Krümmungsmittelpunkten zu beliebigen Punkten von Kegelschnitten
ableiten. Der Satz sagt jedoch nichts über den Berührungspunkt der Tangente des

Kegelschnittes mit der Parabel aus. Er lässt somit nicht den Schluss zu, dass diese
Parabel das Achsenhüllgebilde eines hyperoskulierenden Kegelschnittbüschels ist.

Das hier gefundene Ergebnis soll auf die Konstruktion der Achsen eines
Kegelschnittes x angewendet werden, wenn von diesem der Mittelpunkt M, ein Punkt
Pex und der zugehörige Krümmungsmittelpunkt K gegeben sind.

Von K fällt man das Lot auf den Durchmesser d=(M P) und spiegelt den
Lotfusspunkt L an n. Damit liegen Brennpunkt und Leitgerade der Achsenhüllparabel
vor. Nun zieht man durch jf^ eine Parallele zu d und schlägt um Fh einen Kreis mit
dem Radius a \MFk\. Dieser schneidet die Parallele zu d in den Punkten / und II.
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Abb 3

Die Verbindungsgeraden a=(MI) und a' (MII) stehen aufeinander senkrecht und
berühren nach bekannten Sätzen die Parabel nh Sie smd demnach die Achsen des
durch P, M und K bestimmten Kegelschnittes x (Abb 4)

Abb 4
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In diesem Zusammenhang sind zwei weitere Parabeln von Interesse. Die dem
Büschel {xj angehörende Parabel hat die Gleichung

(mx-y)2- 2m2gy 0. (8)

Die Achse dieser Parabel ns fällt mit der Scheiteltangente von nh zusammen. Für die
Koordinaten des Brennpunktes findet man wie oben

_. / gm gm2 \F " ___- \ (9)s \ 2(l + m2) ' 2(l + m2)) V ;

Ein Vergleich von (9) mit (5) zeigt, dass Fs der Halbierungspunkt der Strecke PFh
ist.

Die Frage nach dem geometrischen Ort der Endpunkte der in bezug auf d

konjugierten Durchmesser aller in {x} enthaltenen Ellipsen führt auf eine weitere Parabel

nk mit der Gleichung

(mx — y)2 — gm2y 0 (10)

Ihre Achse ist die Mittellinie der Leitgeraden d und der Scheiteltangente s von nh,
und ihr Brennpunkt Fk ist Halbierungspunkt der Strecke PFS (vgl. Abbildung 3).

Das oben gefundene Ergebnis soll noch dazu ausgewertet werden, Haupt- und
Nebenachse einer Ellipse aus einem Paar konjugierter Durchmesser konstruktiv zu
finden.

Die Gleichung einer Ellipse aus dem hier betrachteten Büschel {„} hat die
allgemeine Form

Ax2 + 2Bxy+ Cy2+2Dy 0 mit AC - B2 > 0 (11)

Ohne Beschränkung der Allgemeinheit kann angenommen werden, dass A > 0 gilt.
Dann folgt B <0,C>0,D<0 (vgl. Abb. 2).

Für die Längen der konjugierten Halbmesser findet man

D\/A2+B2 D
\PM\ ¥-—- —, \QM\ (12)ll AC-B2 lv ' AC-B2 v ;

und für den Krümmungsradius bzw. Durchmesseranstieg

D A
e -T. «=--jg- (13)

m
Wegen \PFh\=g -=^j folgt mit | PM | p, \ QM | q und | PFh \ r aus

(11)-(13) die Gleichung

rp q2. (14)

Mit (14) ist ein konstruktiv wenig aufwendiger Zugang zum Brennpunkt Fh der

Achsenhüllparabel auch bei dieser Vorgabe gesichert.
Abbildung 5 zeigt eine Möglichkeit, wie aus den konjugierten Durchmessern

von x unter Einsatz der Achsenhüllparabel Haupt- und Nebenachse von x konstruktiv

gefunden werden können.
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1.
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Q121
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Abb. 5

Im Vergleich zur Rytzschen Konstruktion bietet dieser Lösungsweg vor allem
dann den Vorteil grösserer konstruktiver Sicherheit und Genauigkeit, wenn die
konjugierten Durchmesser annähernd gleich lang sind und sich unter einem nur wenig
von n/2 abweichenden Winkel schneiden. In jedem Fall liegen die zum Einsatz
gelangenden Konstruktionselemente nach dieser Methode weiter auseinander, ohne
dass bei Ausführung der Konstruktion der Rahmen des Bildes gesprengt werden
muss.

Abschliessend sollen in die Betrachtung des hyperoskulierenden Kegelschnittbüschels

{x} die Krümmungsmittelpunkte Kx und K2 der ersten und zweiten Evolute
bezüglich P einbezogen werden. Spiegelt man die Affinnormale d an der Normalen n
und bringt diese Gerade mit der Parallelen zur Tangente durch K zum Schnitt,
ergibt sich ein Punkt H. Wird die Strecke KH über H hinaus noch zweimal auf'der
Parallelen abgetragen, so führt diese Konstruktion bekanntlich auf den Krümmungsmittelpunkt

Kx der ersten Evolute (vgl. [2]). Es gilt demnach

3.
r,

m

Für den Anstieg mx der Affinnormalen der ersten Evolute findet man
m (g — um)2 + u (Aum — 5q)

m,
3um(g — um)

(15)

(16)

Nach den gleichen Überlegungen wie oben resultiert daraus für die Koordinaten des
Krümmungsmittelpunktes K2 der zweiten Evolute

K, l 3p /
g\ m \\

3. 12

m2
mit w

um(um — g)

u (1 + m2) —gm
(17)
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Der Mittelpunkt M von x (Schnittpunkt von „ und d) hat die Koordinaten

__"(_>, mw) (18)

Führt man M und __2 mit Hilfe von Parallelen zur „-Achse auf die y-Achse, ergeben
sich die Punkte U bzw. V. Durchläuft M die Gerade d, so wird auch K2 auf der
Geraden mit der Gleichung „ — 3gjm seine Lage in bestimmter Weise variieren. Demnach

hat man auf der y-Achse zwei Punktreihen {U} und {V} in vereinigter Lage.
Zur analytischen Behandlung der geometrischen Verwandtschaft setzt man für die
Ordinaten von U und V die Variablen £ bzw. rj (Abb. 6). Es gilt nach (17) und (18)

£ wm, rj g
_3_?_

wm
2- m2

(19)

Durch Ehminieren von w w(u) aus (19) erhält man für die geometrische
Punktverwandtschaft folgende Gleichung:

m2£r\ + 2g (6 + m2) £ - 3 m2g2 0 (20)

y

U({)

,n

r,<,

VM

Abb. 6



56 Kleine Mitteilungen

Nach Gleichung (20) bilden {£/} und {V} gegenläufige projektive Punktreihen in
vereinigter Lage. Für die Gegenpunkte Ug und Vg der Projektivität ergeben sich die
Ordinaten

_ n u 2g(6 + m2)
£g 0 bzw. %=-____ (2i)

Mit Hilfe von (21) erhält man für die Potenz dieser Projektivität
k2 3g2 (22)

und die Charakteristik der Projektivität

s
6 + m2 - 2 ]/Gd=— ; - mit G=9 + 3m2 + mi. (23)6 + m2+ 2yG v '

Mit den Ergebnissen (21) und (22) ist ein gut überschaubarer konstruktiver Zugang
für jedes beliebige Punktepaar {U, V} und damit auch für die Punktepaare {M, K2}
gesichert (vgl. Abb. 6) (vgl. Sonderfall für Scheitelpunkte in [3]). Bei Vorgabe eines
Kegelschnittes x (etwa durch dessen Achsen) ist es mit diesen Mitteln möglich, die
Krümmungsmittelpunkte K, Kx und __2 zu jedem beliebigen Punkt Pex zu
konstruieren. Umgekehrt ist auch x eindeutig konstruierbar, wenn zu einem Punkt
P ex die Krümmungsmitten __, Kx und K2 vorgelegt sind.

Eberhard Schröder, Technische Universität Dresden, DDR
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Kleine Mitteilungen

Zero-divisors in a ring of arithmetic functions

In [1, p. 247], M. V. Subbarao introduced a convolution in the set S of all
arithmetical functions, which he called 'exponential convolution' as follows:

(a o ß) (1) «(1) ß(l),

(a o ß) (n) 27 «(tf • • ¦ Pf) ßWdl ¦ ¦ ¦ P7lir)
di\ai

J-l, 2, r

ii ol, ß e S and n > 1 has the canonical representation n paxl ¦ ¦ ¦ pa/.
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