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kann man die noch einfachere Reihe
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verwenden, wo Y viermal vorkommt und allgemein " n-mal vorkommt. Man
erhiilt aus dieser sofort auch die einfache bedingt konvergente Reihe
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wobei wieder .~ -, genau n-mal angeschrieben werden soll. Dass eine bedingt

konvergente Reihe bei einer Umordnung mit einer anderen Summe konvergent wer-
den kann, bereitet dem Schiiler Schwierigkeiten beim Verstindnis, weil Beispiele
dazu oft etwas kompliziert sind. Das folgende Beispiel scheint mir recht einfach zu
sein. Offenbar hat die Reihe
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die Summe Null. Ordnen wir sie ein wenig anders, so entsteht die Reihe
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achtmal usw. Diese Reihe hat offensichtlich die Summe (-- 1), also eine Summe = 0.
Natiirlich ist es leicht, auch eine divergente Reihe zu erhalten:
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K. Prachar, Wien

Simultanbeweis des Fermatschen und Wilsonschen Satzes

Der Fermatsche Satz a?~1 = 1 mod ¢ und die Wilsonsche Kongruenz (p — 1)! =—1
mod p gestatten einen einfachen gemeinsamen Beweis, der ihren inneren Zusammen-
hang durch eine interessante Identitit (1) erkennen lésst.



40 Aufgaben

Sei p eine Primzahl, 2 #= 0 mod p eine beliebige ganze Zahl und a; = a/fi;
1 <1 < p— 1. Dann gilt

ay (@ — as) (a; — ag) . . . (a; — Ay 1)
_aal2—1) a(3-—-1) a(p—2) a¥?
oder
(ay (a; — ay) (ay — ag) . .. (@ — “p~1)] (p—1)=ar~t. (1)

Die p — 1 Faktoren in der eckigen Klammer sind mod # ganz und offensichtlich nicht
durch p teilbar. Sie sind paarweise inkongruent, denn aus ¢, = a, — a, wiirde sich
a, = 0 und daraus a = 0 ergeben, und aus 4, — a, = a; — a, wiirde a, = 4, und daraus
x = y folgen. Das Produkt von p — 1 paarweise inkongruenten Faktoren, die nicht
durch # teilbar sind, ist = (p — 1)!. Nach (1) gilt somit

—(p— 1! =ar1 modp. (2)

Die Kongruenz (2) gilt entsprechend unserer Voraussetzung fiir jede beliebige ganze
Zahl a == 0 mod p. Wegen 1 = 1#-1 folgt daher aus (2)

l=1-1=—(p—-1!=at"1 modp.

Damit sind beide Titelsdtze simultan bewiesen. F. Stowener, Mannheim

Aufgaben
Aufgabe 713. Give a proof of
: n
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using only the formula

1 if n=1
2 #a) :{0 if n>1
Lisung: Wir gehen von der bekannten Formel

Zd, p _km) d falls d|m
e th—) =
~ Xp( Y 0 falls dtm

D. Suryanarayana, Waltair, India
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