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36 Elementarmathematik und Didaktik

da die Determinante des 1. Systems N(ß) 5 ist und (7) nach Multiplikation mit N(ß)
lautet:

(3 + 4 ,'). 5 (2 kx + kt). 5 + 5rx+(([2k2- kxy. 5 + 5r2)i.
Die Hilfssysteme haben wegen kf * N(ß) ¦ kf die Lösungen

kf* 5 Äf 2 kf* 5 kf 11

Auf beiden Wegen erhält man wegen der Äquivalenz der Bedingungen | kt — kf | <£

1/2, k{ e Z, und (6): kx 0, k2 2. Aus (7) folgt nun rx l,r2 0, so dass abschliessend

gilt:
N(ß) 5> N(q) 1.

Überblickt man zusammenfassend die Beweismittel, so sind es über die Voraussetzungen
bezüglich des Integritätsbereichs G hinaus nur die Bedingung für nicht leere Lösungsmenge

eines linearen Gleichungssystems im Falle m « 2 und die Kenntnis der
Lösungsterme sowie etwas elementare Zahlentheorie in Z.

Hermann Hering, Frechen (Bundesrepublik)
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Über einige einfache Folgen und Reihen im Schulunterricht

Es sollen hier einige Folgen und Reihen mit einfachen Mitteln behandelt werden,
die vielleicht nicht allgemein bekannt sind.

Ein einfacher Beweis für die Monotonie der Folgen mit dem allgemeinen Glied

/ 1\" / 1\B+1
I 1 + I bzw. 11 -| I benützt nur die Formel1)

a"-b" (a-b) (a"-1 + a"'2 b + h b"'1) (1)

Man hat

Kr-(i+^_r
_(i+_)-_(i+')¦+¦'(1+')-.\ «/ \ n—l) n—l \ n—l/

l) Herr Professor Hlawka machte mich freundlicherweise darauf aufmerksam, dass dieser
Beweis von Yzeren (1970) stammt, der in derselben Weise auch (1 + zjn)n für komplexes
z untersuchte.
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Nach (1) mit a 1 + l/(« - 1), b 1 + 1/« folgt weiter

i (1+
» r'-{(i+-iT)--(i+iri._v,(,+ ')-« — 1 \ «—1/ [\ «—1/ \ M/J n — 1 \ «—1/

-,j-ni(i+-i-,r+(i+-LTr(i+i)^ 4+ti»(»—1)[\ «—1/ \ «—1/ \ n] \ n) j

und dieser Ausdruck ist offenbar grösser als

1 / 1 X""1 1 / 1 \'1 + -«|l +
« — 1 \ «—1/ « (« — 1) \ n—l o,

(denn jeder der « Summanden in der geschlungenen Klammer ist <{1 + l/(« — 1)}" x),

was zu beweisen war. In ähnlicher Weise folgt

/ 1 \n / l\n+1
\ n—l) \ n)

|\ n—l) \ n) \ n \ n)
\ / 1 X""1 / 1 \n~1) 1 1 /

1 _, + + i + _ i +
[\ n — 1J \ n J J«(«— 1) «\

und dies ist grösser als

/ l\n-1 1 1 / 1\" / 1 \" 1

«14-- 1 + - 14- Tl-,;\ «/ n(n— 1) «\ «/ \ n) n(n2— 1)

Ein gewisses Hindernis bei der Behandlung von Folgen wie der mit den Gliedern

an |/w oder an nka" ist es in der Schule, dass diese Folgen üblicherweise mittels des

binomischen Lehrsatzes untersucht werden, der erst am Ende der Schulzeit zur
Verfügung steht und bei Einführung des Grenzwertbegriffes noch nicht bekannt ist. Wir
geben daher eine Behandlung dieser Folgen, ohne den binomischen Lehrsatz zu
benützen. Man hat nach (1) (b 1)

i + yn+ (7«)2 + --- + (V»)"-1 -- -• (2)
y» — 1

Die linke Seite ist nun für gerades « grösser als

(Vn)2 + (Vn)2
+1

+ + (Vn)»'1 > (fn)2

und damit folgt

fl ][
Vn — 1 < t—ir -> 0 für n -> oo

1
8

« 1

2 2
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jedenfalls, wenn « durch gerade Zahlen gegen Unendlich strebt. Für ungerades «
kann man entweder benützen, dass |/m für w > 3 monoton abnehmend ist oder, dass

die linke Seite von (2) für « 2 m + 1

>(Vn)m + 1-m>(Vn)2
*

(« - 1)

ist, was dann

m-1 2

n2(n-l) y%

für « -> oo ergibt.
Ist einmal bekannt, dass }/«->l für »-»oo gilt, so hat man für positives a < 1

und etwa k > 0, a < 6 < 1,

«*«" {(1/«)*«}" < 6",

für genügend grosses «, weil ja (f/«)* a -» a (« -» oo) gelten muss. Somit folgt
«* a" -> 0 für m-^oo bei festem a < 1 (a > 0) und festem k. Aus ]7« -> 1 folgt
weiter, indem man logarithmiert,

log « -> 0 (« -> oo) (3)
«

Damit ergibt sich für oc > 0, /S > 0

(log «)a / log « \ a I cn log («)a \
»' "

„¦ \" .'•
0

ß i)

nach (3), wenn man dort« durch «a ersetzt; wenn z.B. gn - 1 < n* < g„ mit ganzem

g„ gilt, so hat man ja g„-^oo und
ß

log («)a < log g„ log gn
_

g„

und gj(g„ - 1) -» 1 für n -> oo.

Bei der Besprechung der unendlichen Reihen ist es notwendig, durch ein
einfaches Beispiel zu belegen, dass mit an>o£an divergent sein kann, auch wenn a„

CO

für w -> oo gegen Null strebt. Abgesehen von der harmonischen Reihe 2J Vn und den
n 1

noch einfacheren Reihen

oo oo

27 (l7» +1 -]/n) und JJ lj\/n
n-1 n-1

man hat ja
1

|/«+1-1/m -7 ; ^0 (M^OOv * \/n+l +]/n
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und

11 1 1

1+ 4- - + + - >«• ,-=\;n]/2 j/3 \/n \/n

kann man die noch einfachere Reihe

1111111+ + H h +-+ +•••223334
1 1

verwenden, wo viermal vorkommt und allgemein — «-mal vorkommt. Man
4 n

erhält aus dieser sofort auch die einfache bedingt konvergente Reihe

11111111111-1+ 4 + — + — 4- — +••',+ 2 22 23 3 3 3 3 3

wobei wieder — genau «-mal angeschrieben werden soll. Dass eine bedingt
« «

konvergente Reihe bei einer Umordnung mit einer anderen Summe konvergent werden

kann, bereitet dem Schüler Schwierigkeiten beim Verständnis, weil Beispiele
dazu oft etwas kompliziert sind. Das folgende Beispiel scheint mir recht einfach zu
sein. Offenbar hat die Reihe

111111111111111-1+ — + — + — 4- — + - + — + — +•••
2 2 2 2 4 4 4 4 4 4 4 4 8 8

die Summe Null. Ordnen wir sie ein wenig anders, so entsteht die Reihe

11111111111_14-1 — - 4- -I 4- — - + • • •

2 22 4 42 4 44 8 8

wo — — viermal angeschrieben werden soll und dann -„ — —
4 8 8 8 16 16

achtmal usw. Diese Reihe hat offensichtlich die Summe (— 1), also eine Summe 4= 0.

Natürlich ist es leicht, auch eine divergente Reihe zu erhalten:

1111111111111^2 2 2 2 4 4^4^4 4 4 4 4^8^
K. Prachar, Wien

Simultanbeweis des Fermatschen und Wilsonschen Satzes

Der Fermatsche Satz a» -1 1 mod p und die Wilsonsche Kongruenz (p — 1)! =—1

mod p gestatten einen einfachen gemeinsamen Beweis, der ihren inneren Zusammenhang

durch eine interessante Identität (1) erkennen lässt.
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