Elemente der Mathematik
Schweizerische Mathematische Gesellschaft
30 (1975)
2
Inner illumination of convey polytopes
Rosenfeld, Moshe
https://doi.org/10.5169/seals-30644

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LITERATURVERZEICHNIS

- [1] H. GROEMER, Über Würfel- und Raumzerlegungen, El. Math. 19, 25-27 (1964).
- [2] H. HADWIGER, Translationsvariante, additive und schwachstetige Polyederfunktionale, Arch. Math. 3, 387-394 (1952).
- [3] H. HADWIGER, Mittelpunktspolyeder und translative Zerlegungsgleichheit, Math. Nachr. 8 53-58 (1952).
- [4] H. HADWIGER, Ungelöstes Problem Nr. 45, El. Math. 18, 29-31 (1963).
- [5] H. HADWIGER, Translative Zerlegungsgleichheit der Polyeder des gewöhnlichen Raumes, J. reine angew. Math. 233, 200–212 (1968).
- [6] B. JESSEN und A. THORUP, The Algebra of Polytopes in Affine Spaces, (1973, noch nicht publiziert).

Inner Illumination of Convex Polytopes

1. Introduction. An n-polytope P is said to be illuminated by its vertices, if for every vertex x of P there is another vertex y of P such that the line segment joining x and y meets the interior of P. Hadwiger in [1], introduced the notion of polytopes illuminated by their vertices and asked whether such polytopes must have at least 2 n vertices. Recently, Mani [2], proved that for $n \leq 7$ the answer to Hadwiger's problem is affirmative, while for higher dimensions he showed that there are n-polytopes P, that are illuminated by their vertices having about $n + 2\sqrt{n}$ vertices. Mani obtained the exact lower bound k(n) for the number of vertices in an n-polytope P which is illuminated by its vertices. Mani's proof is based on the notion of a set of vertices lying opposite a given vertex of P. The proof proceeds by showing that if for some vertex x of the *n*-polytope P there is more than one vertex lying opposite xthen $f^{0}(P) \geq k(n)$, while if for every vertex x of P there is at most one vertex lying opposite x then $f^0(P) \ge 2n$. For the second part of the proof, results and tools from algebraic topology as well as some combinatorial lemmas (Propositions 4 and 5) were used. In this note, we present an alternative proof to this part that avoids using the lemmas and the algebraic topology.

The notation used in this note will be the same as Mani's; we will only repeat those definitions and notation that are used in our proof.

We denote by $\Delta^{0}P$ the set of vertices of the polytope P and by $f^{0}(P)$ their number.

A set $V \subset \varDelta^0 P$ illuminates itself if for every v in V there is another vertex v' in V that illuminates v in P.

A set $Y \subset \Delta^0 P$ lies opposite the vertex x, if x illuminates every vertex y in Y and $\Delta^0 P \sim (\{x\} \cup Y)$ illuminates itself.

We set $\gamma(x, P) = \max\{\text{card } Y : Y \text{ lies opposite } x \text{ in } P\}.$

2. Proof of the Theorem.

Theorem: If $P \subset E^n$ is illuminated by its vertices, then either $\gamma(x, P) \ge 2$ for some vertex x of P or $f^0(P) \ge 2n$.

Proof. Assume first that for some vertex x of P, $\gamma(x, P) = 0$. Since P is illuminated by its vertices there is a vertex x' of P that illuminates x. Since $\gamma(x, P) = 0$, the set $C = \Delta^0 P \sim \{x, x'\}$ does not illuminate itself. Let A be the set of all vertices in C that are not illuminated in C. Let Y be the set of all vertices y in A that are illuminated in P by x, and let $Y' = A \sim Y$. Obviously, if y' is in Y', then x' illuminates y'. If Y' is empty, then the set $\{x'\} \cup \{Y\} \subset \Delta^0 P$ lies opposite x, in contradiction to the assumption that $\gamma(x, P) = 0$. If $Y \neq \emptyset$, then the set Y lies opposite x and again we obtain a contradiction. Hence Y must be empty. Since $A \neq \emptyset$, and since the set $\{x\} \cup A$ lies opposite x', we have $\gamma(x', P) \ge 2$.

We may therefore assume that $\gamma(x, P) = 1$ for every vertex x in P. Let G be a graph with vertex set $V(G) = \Delta^0 P$, and (x, y) in E(G) if $\{y\}$ lies opposite x. (Obviously, if $\{y\}$ lies opposite x then $\{x\}$ lies opposite y.) We will show that G has a 1-factor. This will be done in two steps.

(1) We show first that the valence of every vertex x of G is at most two. Indeed if $\{x_1, \ldots, x_k\}, k > 2$, is the set of all vertices of G which are connected by an edge to x_0 , the set $D = \Delta^0 P \sim \{x_0, x_1, \ldots, x_k\}$ cannot illuminate itself. Let $A \subseteq D$ be the set of vertices in D that are not illuminated in D and not illuminated by x_0 . If $A = \emptyset$ then we would have $\gamma(x_0, P) \ge k$ (the set $\{x_1, \ldots, x_k\}$ and the vertices of D illuminated by x_0 would lie opposite x_0), hence we may assume that $A \neq \emptyset$. Let d be in A. Since x_1 lies opposite x_0 , d must be illuminated by some x_j , $1 < j \le k$. Since x_j also lies opposite x_0 , d must be illuminated by $\{x_1, x_2\}$. If $A = \{d\}$, then it is easily seen that $\{x_1, x_2\}$ lies opposite d and we would have $\gamma(d, P) \ge 2$, in contradiction to the assumption that $\gamma(x, P) = 1$ for every vertex in P. Hence $A = \{d, e, \ldots, z\}$. If every vertex in A other than d is illuminated by some x_j with j > 2, then again $\{x_1, x_2\}$ would lie opposite d. We conclude that A must contain a vertex c that illuminates $\{x_1, x_2\}$. It is a simple matter to check that $\{d, c\}$ lies opposite x_1 and we would have $\gamma(x_1, P) \ge 2$. This establishes our claim.

(2) Let x_0 have valence 2 in G. Let x_1, x_2 be the two vertices such that x_i lies opposite $x_0, i = 1,2$. The set $D = \Delta^0 P \sim \{x_0, x_1, x_2\}$ does not illuminate itself. Let $A \subseteq D$ be the set of vertices in D that are not illuminated in D and not illuminated by x_0 . If $A = \emptyset$, we would have $\gamma(x_0 P) \ge 2$, hence $A \neq \emptyset$. Since x_2 lies opposite x_0 , and since for every d in A, d is not illuminated in D and not illuminated by x_0, d must be illuminated by x_1 . Hence A lies opposite x_1 and by a similar argument, A lies opposite x_2 . If card A > 1, then we would have $\gamma(x_1, P) \ge 2$. Therefore $A = \{d\}$ and d is connected by an edge to x_1 and x_2 .

From (1) and (2) it follows that G is the disjoint union of edges and 4-cycles. Therefore G has a 1-factor. Let F be a facet of P. F contains at least n vertices of P. Since no two vertices of F illuminate each other, $\Delta^0 F$ is an independent set of vertices in G. Since G has a 1-factor, G must have at least 2 n vertices.

Moshe Rosenfeld, University of Washington, Seattle

REFERENCES

- [1] H. HADWIGER, Ungelöstes Problem Nr. 55, El. Math. 27, 57 (1972).
- [2] P. MANI, Inner Illumination of Convex Polytopes, Comm. Math. Helv. 49, 65-73 (1974).