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14 Aufgaben

exceeds m. By Bertrand's theorem [2, p. 343] m < p < 2m. Therefore, if m > 3,
9#) 2[(P — l)/2] | m\, so that Euler's theorem gives (m\)ml 1 (mod />). It is easy
to see that this congruence also holds for m 2, 3. Since p \ (2m)l the proof of the
lemma is complete.

Proof of the theorem. For i 1, ¦¦¦ ,n, the exponent e( of the highest power of qt
which divides dl, is

~ r„i ~ rf

£_ L?ü /_. _j

[2, p. 342]. Since for 1 ^ * ^ » - 1

" rf ¦ rf

» + 1

rf
< —

"rf"

" rf "

<
"rf"
..f. (/ 2, 3 -•••)

we have d > ex> e2> ¦ ¦ ¦ > e„. Hence < ?*(1) ?f<2> • ¦ • ^^M», where 0 < a(l) < a(2)
< • • ¦ < a(«). This completes the proof.

Reijo Ernvall, University of Turku, Finland
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Aufgaben

Aufgabe 709. It is well known (cf. e.g. H. Hadwiger, H. Debrunner, V. Klee,
Combmatorial Geometry in the Plane, New York 1964, p. 4, Problem 5) that no three
distinct points of a square lattice can be the vertices of an equilateral triangle. Show
that no four distinct points of an equilateral triangulär lattice can be the vertices of a
square. M. S. Klamkin, Dearborn, Michigan, USA

Erste Lösung: Wir beweisen allgemeiner den folgenden Satz:
Ein rechtwinkliges Dreieck kann genau dann in ein reguläres Dreiecksgitter

eingelagert werden (d.h., die Ecken sind Gitterpunkte), wenn das Verhältnis seiner
Katheten die Form r^S mit einer positiven rationalen Zahl r hat.

Daraus folgt unmittelbar die Behauptung der Aufgabe 709, aber z. B. auch der
Satz: Kein pythagoräisches Dreieck kann in ein reguläres Dreiecksgitter eingelagert
werden.

Beweis: I. a und b seien zwei Einheitsvektoren, die das Gitter aufspannen,
ab =1/2. A, B und C seien drei verschiedene Gitterpunkte, die ein bei C
rechtwinkliges Dreieck bilden. Ist dann etwa BC xa + yb, CA ua + vb mit ganzen
Zahlen x, y, u, v, so ist BCCA 0, folglich x (2 u + v) + y (u + 2 v) 0. Es gibt also
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eine rationale Zahl t mit x t (u + 2 v), y — t (2 u + v). Damit wird BC2 x2 + xy+y2
t2[(u_+2^V- (u+2v) (2u + v)+(2u + v)2] 3ti{ui+uv + v2) 3t2-CA2, woraus

folgt BC\CA=\t\]j3.
II. Ist umgekehrt ABC ein bei C rechtwinkliges Dreieck mit BCjCA (p/q) |/3

(p, qeN), so ist BC/2p= (1/2) (CA/q)]/3. Also ist BC/2p Höhe eines gleichseitigen
Dreiecks mit einer Ecke in C und der Gegenseite parallel zu AC, bei dem die Seitenlänge

CA/q beträgt. Offenbar ist ABC in das von diesem regulären Dreieck erzeugte
Gitter eingelagert. E. Teuffel, Korntal, BRD

Zweite Lösung: Identifiziert man die Ebene des regulären Dreiecksgitters mit
der komplexen Zahlenebene, so darf für die Menge G der Gitterpunkte folgende
Darstellung vorausgesetzt werden:

G= {z \z— m + ns; m, »eZ;e=« "'"}.
Angenommen es gäbe ein von den vier Gitterpunkten

zk=mk + nke (k 0,1,2,3)

gebildetes Quadrat. Ohne Beschränkung der Allgemeinheit darf vorausgesetzt werden,

dass ~0 0 ist und dass die übrigen Ecken so numeriert sind, dass z3 izx ist.
Aus m3 +n3e i(mx4- nxe) folgt, dass i in dem Zahlkörper Q (e) liegen musste, der
durch Adjunktion von e zum Körper Q der rationalen Zahlen entsteht. Dies trifft
bekanntlich nicht zu, so dass die oben gemachte Annahme zum Widerspruch führt.
(Wäre nämlich i a + bs mit a, b e Q, dann musste b 4= 0 sein wegen i 0 Q, ferner
wäre i a+b/2 + i]/3bj2, also (/3 2/b im Widerspruch zur Irrationalität von j/3).

Verallgemeinerung: Es gilt folgender Satz: Wenn sämtliche Ecken eines N-Ecks
(N > 2) Gitterpunkte des regulären Dreiecksgitters sind, so ist N 3 oder N 6.

Beweis: Die Ecken des regulären N-Ecks seien z0, zx,... ,zN_x, wobei nach
Voraussetzung gilt: zk mk + nke{k 0,l,... ,N —1). Wie oben darf _0 0 und %_t

e'a_1 vorausgesetzt werden, wo oc der Innenwinkel des regelmässigen N-Ecks ist.
Wegen a jr(l — 2/N) ist dann mx_x + nN_xe= — e~2jt'lx (mx + nxe). Also gehört die
primitive Emheitswurzel e~Znl,N dem quadratischen Zahlkörper Q(e) an. Da der
Grad einer primitiven N-ten Einheitswurzel gleich cp(N) (Eulerfunktion!) ist und
<p{N) > 1 ist wegen N > 2, muss <p(N) 2 sein. Dies trifft genau dann zu, wenn
N e{3,4,6} ist. Da der Fall N 4 oben ausgeschlossen wurde, bleiben nur die Fälle
N 3 und N 6 übrig, die trivialerweise realisierbar sind.

O. Buggisch, Darmstadt, BRD
Weitere Lösungen sandten A. Bager (Hj0rring, Dänemark), C. Bindschedler

(Kusnacht ZH), J. Binz (Bolligen BE), P. Bundschuh (Köln, BRD), H. Harborth
(Braunschweig, BRD), H. Kappus (Rodersdorf SO), O. P. Lossers (Eindhoven,
Niederlande), I. Paasche (München, BRD), J. Schopp (Budapest, Ungarn), K. Stoop
(Bern), E. Teuffel (Korntal, BRD; zweite Lösung) und H. Warncke (Porto Alegre,
Brasilien).

Aufgabe 710. Man beweise, dass an der Stelle x=0 sämtliche Ableitungswerte
der Funktion f.R^R gemäss /(„) 2 x/(l + ex) (x e R) ganzzahlig sind.

R. Weissauer, Ludwigshafen, BRD
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Lösung: Die Mittag-Lefflersche Partialbruchzerlegung der meromorphen Funktion

2„/(l + ex) der komplexen Variablen x ergibt sich zu
OO

2xl(l + ex) x-4x22J(x2 + 7i2(2k-l)2)^;
* i
oo

dabei ist -*2(...)-i 27(~ 1)'(*/w)2'(2* - l)"2' in \x\<n. Da die Doppelreihe

oo

2J2J ••¦ in 1*1 <71 absolut konvergiert, ist dort 2„/(l + e') #4-4jT'(-l)' [xJTtf1
ft j ,-j00 00

27(2ä-1)-2' a:4-427(-1);(^)2,C(2/)(1-2^), wobei f(.) die Riemannsche
ft-l ;-l
Zetafunktion bedeutet. Die Bernoullischen Zahlen Bx, B2, sind definiert durch

00

xl(e?-l) l-xl2+£(-l)> + 1BJx**l(2j)l (|„|<2w),
;-l

und es ist wohlbekannt, dass 22> ^tt2' _?, (- 1)'+ 1 (2;)! £ (2f) für / 1,2,... gilt; also
ist in | x | < tc

00

/(„) 2*/(l + e*) x-2£x*' (22> - 1) _?,/(2/")!
j-i

und wir brauchen nur festzustellen, dass 2 (22-1 — 1) B} für 7 1,2,... ganzrational ist:
Nach dem vom Staudtschen Satz ist aber

(— 1)J Bj c} + 1/2 -I- £ 1/p mit ganzrationalen c}

(P-1)\Z,

Ist p eine Primzahl > 2, so ist nach dem kleinen Fermatschen Satz 2P _1 1 (mod p);
also gilt für jede Primzahl p>2 mit (p-l)\2f, dass p\(22l-l), und somit ist
2 (22> - 1) B, für jedes j > 1 ganzrational. P. Bundschuh, Köln, BRD

Weitere Lösungen sandten G. Bach (Braunschweig, BRD), O. Buggisch (Darmstadt,

BRD), H. Harborth (Braunschweig, BRD), H. Kappus (Rodersdorf SO),
O. P. Lossers (Eindhoven, Niederlande), I. Paasche (München, BRD; zwei Lösungen),
E. Teuffel (Korntal, BRD; zwei Lösungen), M. Vowe (Therwil BL) und R. Wyss
(Flumenthal SO).

Anmerkung der Redaktion: Verschiedene Einsender machen darauf aufmerksam,
dass die nichtverschwindenden Ableitungswerte bei Null ungerade sind (vgl. etwa
L. Saalschütz, Vorlesungen über die Bernoullischen Zahlen, Springer Berlin 1893,
p. 117-118).

O. P. Lossers und E. Teuffel führen den Beweis unter Rückgriff auf die Identität
f(x) — x= — x(e*— l)j(ex + 1) induktiv nach der Ableitungsordnung ohne Verwendung
der Bernoullischen Zahlen.

Aufgabe 711. Aus n paarweise verschiedenen reellen Zahlen bilde man alle
möglichen Summen mit k verschiedenen Summanden (1 < k < n). Wieviele
verschiedene Werte nehmen diese Summen mindestens an

H. Harborth, Braunschweig, BRD
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Lösung: Sind ax < a2 < • • ¦ < an die gegebenen n Zahlen, so ist die kleinste k-
gliedrige Summe m ax-\ (- ak und die grosste M an _ k + x H h «»• Der Übergang

von der ersteren zur letzteren kann so vollzogen werden, dass zuerst der Index
des Ä-ten Summanden von k bis n, dann der Index des (k — l)-ten Summanden von
k — 1 bis n — 1 je in Einerschritten wächst usw. Da es k (n — k) solche Schritte gibt
und da die Summe jedesmal zunimmt, treten hierbei k(n — k) + l verschiedene
Summenwerte auf. Bei anderer Wahl der Einzelschritte können im allgemeinen noch
andere Summenwerte auftreten. Bilden aber die a, eine arithmetische Folge erster
Ordnung, so erschöpfen jene k(n — k) + l Summenwerte alle Möglichkeiten zwischen

m und M (Grenzen inbegriffen). k(n — k) + l ist also die gesuchte Minimalzahl.
C. Bindschedler, Kusnacht ZH

Weitere Lösungen sandten R. Acampora (Zürich), O. P. Lossers (Eindhoven,
Niederlande), K. Spindelböck (Graz, Österreich), K. Stoop (Bern) und M. Vowe

(Therwil BL).

Aufgabe 712. _t(a,0), B(ß,0), C(y,0), D(d,0) d^signant les points d'mtersection
des droites ax, a2, a3, a4 - formant un quadrilatere complet - avec la droite de Simson
du quadrilatere, le rayon RM du cercle de Miquel (cercle passant par les centres des

cercles circonscrits aux quatre triangles et par le point de Miquel [point commun
aux quatre cercles circonscrits] M(0,/j.)) est donne par

Rm
_??.Rfi RyRi

{Ra ^MA,Rß MB, etc.)
4 fl

J. Quoniam, St-Etienne, France

Lösung: Es seien „,. die Seiten und P{j a{ aj die Ecken des gegebenen vollständigen

Vierseits. Das Dreiseit ajakal Dreieck PklPnPjk) habe den Umkreis ct mit
dem Mittelpunkt Cf und dem Radius rt {i,j,k,l= 1,2,3,4). Die vier Kreise c{ gehen
durch den Miquel-Punkt M. Der Fusspunkt des von M auf „,. gefällten Lotes sei Ai
und seine Länge Ä, M_1!. Die vier Punkte A{ liegen auf der Simson-Geraden s.

Der durch M und die vier Punkte Ct gehende Miquel-Kreis cm habe den Mittelpunkt
Cm und den Radius Rm- Die Kreise cm und c, schneiden einander in M und N,.

Da der Kreis cm durch die Punkte M und Ar4 des Kreises c4 und durch dessen

Mittelpunkt C4 geht, sind die Bogen MC4 und C^Nt von cM gleich lang und somit
die Peripheriewinkel MC3Ct und CiC3Ni von cm gleich gross. C3Ci ist also Sym-
metrale des Winkels MC3NV Die Schnittpunkte M und P12 der Kreise c3 und c4

liegen zu C^ spiegelbildlich. Daher ist C3C^ auch Symmetrale des Winkels MC3PV2

und somit liegen P12, C3 und N4 auf einer Geraden. Der Winkel MNiPw ist daher

zugleich ein zum Bogen MCS von cM und ein zum Bogen MP12 von c4 gehöriger
Peripheriewinkel, und folglich sind auch die zugehörigen Zentriwinkel MCMC3 und
MCJPX2 gleich gross. Analoge Beziehungen gelten für die ebenfalls auf dem Kreis c4

liegenden Punkte P23 und P13, und die korrespondierenden Punkte Cx bzw. C2 von
cM- Demnach sind die Sehnenvierecke MCXCZC3 und MP23PX3Pn gleichsinnig ähnlich.

Die Spiegelbilder P14, P24, P34 von M bezüglich der Seiten des Dreiecks CXC2C3

liegen auf _4. Daher liegen die Fusspunkte der Lote aus M auf die Seiten des Dreiecks

CjCjCg auf der zu at parallelen Geraden s4, die von M den Abstand i?4/2 hat.

s4 ist die Simson-Gerade des Dreiecks CjC2C3 bezüglich des auf seinem Umkreis
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liegenden Punktes M. Da somit in den durch MCff3 und MP23P13P12 festgelegten
ähnlichen Feldern die Simson-Geraden s4 und s einander entsprechen, so verhalten
sich entsprechende Längen wie die Abstände des Punktes M von s4 und s, also wie
X4: 2/i, oder wie die Umkreisradien PM:>"4, woraus RM riRJ2n folgt.

Sind M und M4 Gegenpunkte auf c4, so sind die Winkel MP12A.2 und MMtP^
als Peripheriewinkel über dem Bogen MP23 von c4 gleich gross. Demnach sind die
rechtwinkligen Dreiecke MP12A2 und MMtP23 ähnlich, und es ist rt MP19 ¦ MPJ2 R2.
Die Winkel MP]2_t2 und MAß sind als Peripheriewinkel über dem Bogen
MA2 des Kreises mit dem Durchmesser MPU gleich gross. Somit sind die
rechtwinkligen Dreiecke MP12A2 und MAx0 ähnlich, und es ist MP12 RxRJ/j, und analog

MP23= R.2RJfj,. Aus den obigen Formeln erhält man zunächst r4= RxR9Rj2/i2
und schliesslich RM= RXR2R3RJA/j?. K. Grün, Linz (Donau), Österreich

Eine weitere Lösung sandte G. Bercea (München, BRD).

Neue Aufgaben
Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift

erbeten bis 10. August 1975. Dagegen ist die Einsendung von Lösungen zu den mit
Problem A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band
25, p. 67), Problem 625B (Band 25, p. 68), Problem 645A (Band 26, p. 46), Problem
672 A (Band 27, p. 68), Aufgabe 680 (Band 27, p. 116), Problem 724 A (Band 29,
p. 99).

Aufgabe 733. Let n be a positive integer > 2. Let L be a line which intersects
the (n-l)-dimensional hyperplanes containing the (n - l)-dimensional faces of a
given n-dimensional simplex of vertices A, (i=l,... ,n+1) in the uniquely
determined points Bt. Prove that the n-dimensional volume of the convex hüll of the
midpoints of Aßi is zero. This extends the known results for n 2, 3 for which the
midpoints are colhnear and coplanar, respectively.

M. S. Klamkin, Dearborn, Michigan, USA

Aufgabe 734. In einem ebenen Dreieck mit den Seiten a, sei R der Umkreisradius

und r der Inkreisradius. Man zeige, dass

9R Ar 2(a\ + al + d§
_. _ _ __• i - a/ > 1()
r K axa2 a3

mit Gleichheit genau für das gleichseitige Dreieck.
E. Braune, Linz, Donau, Österreich

Aufgabe 735. C bezeichne die Menge der komplexen Zahlen. Es sei deC
beliebig und cp die durch <p{z): (d-z)-1 erklärte Abbildung von Cu {oo} in sich, wobei

<p(oo) 0 und 99(rf) 00 gelte. Man finde notwendige und hinreichende
Bedingungen für die Konvergenz der durch

-! e Cu {00} beliebig; bn + l <p (bn) (n > 1)

erklärten Folge von Elementen von C u {00} und bestimme im Falle der Existenz
um»—00 bn. J. Binz, Bern



Bericht 19

Aufgabe 736. Man beweise, dass für jedes nichtkonstante Polynom / mit
ganzzahligen Koeffizienten die Reihensumme

OO 1
——¦ i.

ä [7wr~77/(i)y
existiert und irrational ist, wobei bei der Bildung des kleinsten gemeinsamen
Vielfachen [/(«),..., /(l)] eventuelle Werte Null von / zu ignorieren sind.

P. Erdös, Budapest, Ungarn

Bericht
VIII. Österreichischer Mathematikerkongress

Wien, 17.-21. September 1973

Der Einladung zum VIII. Österreichischen Mathematikerkongress folgten diesmal

rund 700 Mathematiker aus 28 Ländern; auch ein kleines Schweizerkontingent
war vertreten. Der Kongress tagte in den Neubauten der Technischen Hochschule
in Wien.

Die feierliche Eröffnung vollzog sich mit echt wienerischem Charme im
Auditorium Maximum der Hochschule am Getreidemarkt: Den Damen wurde beim
Betreten des Raumes eine Riesennelke überreicht, und zwischen den üblichen Begrüs-
sungsansprachen spielte ein kleines Kammerorchester mit Schubertschen Tänzen
auf. Schwerpunkt der Eröffnungsfeier war ein Vortrag des Vorsitzenden der
Österreichischen Mathematischen Gesellschaft, Prof. Dr. H. Stetter (TH Wien), über das

Thema «Mathematik in der Gesellschaft von heute». In recht humorvollen und
gewandten Worten versuchte Stetter eine Gegenüberstellung der Denkweisen in
Bereichen der Mathematik und der Soziologie. Bei der Zunft der Soziologen - Stetter
bezeichnete sie als die modernen Sittenrichter - zählt die Mathematik mit ihren
harten Methoden bekanntlich zum schaurigen Instrumentarium der reaktionären
Unterdrückung. Der Mathematikunterricht macht jedem Schüler vor, dass eine Aussage

oder ein Ergebnis entweder richtig oder falsch ist. Aber wo käme man in den

Augen der Soziologen hin, wenn solche Kriterien zum Maßstab erhoben würden
Beweist nicht jeder Politiker, dass es nur auf den Standpunkt ankommt, ob eine

Aussage grandios oder verwerflich ist. Wo käme man hin, wenn man seine
Formulierungen so sorgfältig und präzis wählen musste, dass es nicht möglich wäre, am
nächsten Tag zu behaupten, man habe genau das Gegenteil sagen wollen, man sei

nur falsch verstanden worden. Prof. Stetter konnte auch noch eine weitere Forderung
der Mathematik aufzeigen, die sich im modernen Getriebe recht altmodisch
ausnimmt: Die Tatsache, dass eine Aussage auch bewiesen werden muss. Wo bliebe die
dialektische Schulung, wo die rhetorische Überzeugungskraft, wenn die
Angesprochenen nicht nur eindrucksvolle Worte, sondern stichhaltige Begründungen
verlangten Immer wieder muss man erleben, dass unbewiesene Behauptungen
glaubhaft werden, wenn sie nur oft genug wiederholt werden. Der Mathematiker
muss sich schliesslich auch noch die Frage gefallen lassen, ob die Gepflogenheiten in
seinem Fach nicht in unmittelbarem Widerspruch zum demokratischen Grundprinzip
der Gültigkeit von Mehrheitsentscheidungen stehen. Durch keine Abstimmung
kann doch n zu einer rationalen Zahl erklärt werden. Das Verdammungsurteil der
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