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14 Aufgaben

exceeds m. By Bertrand’s theorem [2, p. 343] m < p < 2m. Therefore, if m > 3,
@(p) = 2((p — 1)/2] | m!, so that Euler’s theorem gives (m!)™' = 1 (mod ). It is easy
to see that this congruence also holds for m = 2, 3. Since p | (2m)! the proof of the
lemma is complete.

Proof of the theorem. For i =1, .--, n, the exponent ¢, of the highest power of ¢,
which divides 4!, is
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we haved > e; > ¢, > - - - > ¢,. Hence t = g2V g2 . .. g% where 0 < a(l) < a(2)
<+ -+ < a(n). This completes the proof.
Retjo Ernvall, University of Turku, Finland
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Aufgaben

Aufgabe 709. It is well known (cf. e.g. H. Hadwiger, H. Debrunner, V. Klee,
Combinatorial Geometry in the Plane, New York 1964, p. 4, Problem 5) that no three
distinct points of a square lattice can be the vertices of an equilateral triangle. Show
that no four distinct points of an equilateral triangular lattice can be the vertices of a
square. M. S. Klamkin, Dearborn, Michigan, USA

Erste Lésung: Wir beweisen allgemeiner den folgenden Satz:

Ein rechtwinkliges Dreieck kann genau dann in ein regulires Dreiecksgitter
eingelagert werden (d.h., die Ecken sind Gitterpunkte), wenn das Verhiltnis seiner
Katheten die Form r)/ 3 mit einer positiven rationalen Zahl » hat.

Daraus folgt unmittelbar die Behauptung der Aufgabe 709, aber z.B. auch der
Satz: Kein pythagordisches Dreieck kann in ein regulires Dreiecksgitter eingelagert
werden.

Bewers: 1. @ und b seien zwei Einheitsvektoren, die das Gitter aufspannen,
a-b=1/2. A, B und C seien drei verschiedene Gitterpunkte, die ein bei C recht-
winkliges Dreieck bilden. Ist dann etwa BC=xa+yb, CA=ua+vb mit ganzen
Zahlen x, y, u, v, so ist BC-CA =0, folglich x (2u + v) + vy (u+ 2v) = 0. Es gibt also
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einerationale Zahlimit x =¢ (u-+2v),y = — ¢ (2% + v). Damit wird BC? = x2 + xy + y2
=8[(u+20)2— (u+29) Lu+t+v)+ 2u+v)] =32 w2+ uv+ v?) =3#.CA? woraus
folgt BC/CA = |t |} 3.

IL. Ist umgekehrt A BC ein bei C rechtwinkliges Dreieck mit BC/CA = (p/q)V/ 3
(p, geN), soist BC/2p=(1/2)(CA/q))/3. Also ist BC/2p Hohe eines gleichseitigen
Dreiecks mit einer Ecke in C und der Gegenseite parallel zu AC, bei dem die Seiten-
linge CA/q betrigt. Offenbar ist A BC in das von diesem reguliren Dreieck erzeugte
Gitter eingelagert. E. Teuffel, Korntal, BRD

Zweite Losung: Identifiziert man die Ebene des reguliren Dreiecksgitters mit
der komplexen Zahlenebene, so darf fiir die Menge G der Gitterpunkte folgende
Darstellung vorausgesetzt werden:

G={z|z=m+mne, m, nel,e=c B},
Angenommen es gibe ein von den vier Gitterpunkten
Zr=m,+n.e (k=0,1,2,3)

gebildetes Quadrat. Ohne Beschrinkung der Allgemeinheit darf vorausgesetzt wer-
den, dass z,=0 ist und dass die tibrigen Ecken so numeriert sind, dass z; =172, ist.
Aus my+ nze =1 (my+ n,y¢) folgt, dass 7 in dem Zahlk6rper Q (e) liegen miisste, der
durch Adjunktion von & zum Kérper Q der rationalen Zahlen entsteht. Dies trifft
bekanntlich nicht zu, so dass die oben gemachte Annahme zum Widerspruch fiihrt.
(Wére ndmlich 1 =a - be mit @, b € Q, dann miisste b + 0 sein wegen 7 ¢ Q, ferner

Verallgemeinerung: Es gilt folgender Satz: Wenn simtliche Ecken eines N-Ecks
(N > 2) Gitterpunkte des reguldren Dreiecksgitters sind, so ist N = 3 oder N = 6.

Beweis: Die Ecken des reguldren N-Ecks seien 2, z,, ..., 2y _;, wobei nach Vor-
aussetzung gilt: z,=m, +n,e(k=0,1,...,N —1). Wie oben darf z,=0 und zy_;
= ¢'*z, vorausgesetzt werden, wo « der Innenwinkel des regelmissigen N-Ecks ist.
Wegen o =g (1 - 2/N) ist dann my _; +ny 6= — e 27N (m, + n,¢). Also gehort die
primitive Einheitswurzel ¢ 27N dem quadratischen Zahlkérper Q(e) an. Da der
Grad einer primitiven N-ten Einheitswurzel gleich ¢(N) (Eulerfunktion!) ist und
@(N) >1 ist wegen N > 2, muss ¢(N)=2 sein. Dies trifft genau dann zu, wenn
N €{3,4,6} ist. Da der Fall N =4 oben ausgeschlossen wurde, bleiben nur die Fille
N =3 und N =6 iibrig, die trivialerweise realisierbar sind.

O. Buggisch, Darmstadt, BRD

Weitere Losungen sandten A. Bager (Hjorring, Didnemark), C. Bindschedler
(Kiisnacht ZH), J. Binz (Bolligen BE), P. Bundschuh (Kdéln, BRD), H. Harborth
(Braunschweig, BRD), H. Kappus (Rodersdorf SO), O. P. Lossers {Eindhoven,
Niederlande), I. Paasche (Miinchen, BRD), J. Schopp (Budapest, Ungarn), K. Stoop
(Bern), E. Teuffel (Korntal, BRD; zweite Losung) und H. Warncke (Pérto Alegre,
Brasilien).

Aufgabe 710. Man beweise, dass an der Stelle x = 0 simtliche Ableitungswerte
der Funktion f: R —» R gemadss f(x) = 2x/(1 + ¢*) (x€ R) ganzzahlig sind.
R. Weissauer, Ludwigshafen, BRD
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Lisung: Die Mittag-Lefflersche Partialbruchzerlegung der meromorphen Funk-
tion 2x/(1 + ¢*) der komplexen Variablen x ergibt sich zu

zx/(l‘*‘f’x)mx—4x2§(x2+n2(2k— 1)2)-1

E~1
dabei ist --x2(...)“122(—— 1)/ (x/7)*" (2k— 1)~ in | x| <z. Da die Doppelreihe

EZ in |x| <<mw absolut konvergiert, ist dort 2x/(1 -+ ¢%) —x—§-42(—~ )7 (x/m)?

P=

2 (2k—1)" 27—x+42 Y (x/7)27 £ (27) (1 — 2-21), wobei {(.) die Riemannsche

k=1
Zetafunktion bedeutet D1e Bernoullischen Zahlen B,, B,, ... sind definiert durch

xf(eF—1)=1 _x/2+2(— 1)f+lBjx2f/(zy')! (2] <2m),

und es ist wohlbekannt, dass 2% ~1 7% B, = (— 1)1+ (24)!{ (24) fiir 1 = 1,2, ... gilt; also
istin |x| <an

fx)=2%/(1+ €)= x— fogf (26 —1) B;j(27)!,

und wir brauchen nur festzustellen, dass 2(2%/— 1) B, fiir j =1, 2, ... ganzrational ist:
Nach dem vom Staudtschen Satz ist aber
(—1)B;=c;+1/2+ Z 1/p mit ganzrationalen c; .

p>2
F-1)2f

Ist p eine Primzahl > 2, so ist nach dem kleinen Fermatschen Satz 2?2 ! =1 (mod p);
also gilt fir jede Primzahl > 2 mit (p —1) |27, dass | (2% — 1), und somit ist
2 (2% — 1) B, fiir jedes § = 1 ganzrational. P. Bundschuh, Kéln, BRD

Weitere Losungen sandten G. Bach (Braunschweig, BRD), O. Buggisch (Darm-
stadt, BRD), H. Harborth (Braunschweig, BRD), H. Kappus (Rodersdorf SO),
O. P. Lossers (Eindhoven, Niederlande), I. Paasche (Miinchen, BRD; zwei Losungen),
E. Teuffel (Korntal, BRD; zwei Losungen), M. Vowe (Therwil BL) und R. Wyss
(Flumenthal SO).

Anmerkung der Redaktion: Verschiedene Einsender machen darauf aufmerksam,
dass die nichtverschwindenden Ableitungswerte bei Null ungerade sind (vgl. etwa
L. Saalschiitz, Vorlesungen iiber die Bernoullischen Zahlen, Springer Berlin 1893,
p. 117-118).

O. P. Lossers und E. Teuffel fithren den Beweis unter Riickgriff auf die Identitit
f(x) — x = — x (¢* — 1)/(e* + 1) induktiv nach der Ableitungsordnung ohne Verwendung
der Bernoullischen Zahlen.

Aufgabe 711. Aus » paarweise verschiedenen reellen Zahlen bilde man alle
moglichen Summen mit % verschiedenen Summanden (1 < k < #). Wieviele ver-
schiedene Werte nehmen diese Summen mindestens an ?

H. Harborth, Braunschweig, BRD
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Lisung: Sind a, <<a, <--- < a, die gegebenen n Zahlen, so ist die kleinste -
gliedrige Summe m = a, + -+ + a;, und die gréosste M =a, _, ., + -+ +a,. Der Uber-
gang von der ersteren zur letzteren kann so vollzogen werden, dass zuerst der Index
des k-ten Summanden von k bis #, dann der Index des (k£ — 1)-ten Summanden von
k—1 bis n—1 je in Einerschritten wichst usw. Da es &k (n — &) solche Schritte gibt
und da die Summe jedesmal zunimmt, treten hierbei k(n — &)+ 1 verschiedene
Summenwerte auf. Bei anderer Wahl der Einzelschritte kénnen im allgemeinen noch
andere Summenwerte auftreten. Bilden aber die a; eine arithmetische Folge erster
Ordnung, so erschipfen jene & (n — &) + 1 Summenwerte alle Moglichkeiten zwischen
m und M (Grenzen inbegriffen). & (n — k) 4 1 ist also die gesuchte Minimalzahl.

C. Bindschedler, Kiisnacht ZH

Weitere Losungen sandten R. Acampora (Ziirich), O. P. Lossers (Eindhoven,
Niederlande), K. Spindelbéck (Graz, Osterreich), K. Stoop (Bern) und M. Vowe
(Therwil BL).

Aufgabe 712. 4(x, 0}, B(f,0), C(y,0), D(§,0) désignant les points d’intersection
des droites a,, a,, @3, @, — formant un quadrilatére complet —avec la droite de Simson
du quadrilatére, le rayon Ry du cercle de Miquel (cercle passant par les centres des
cercles circonscrits aux quatre triangles et par le point de Miquel {point commun
aux quatre cercles circonscrits] M(0, u)) est donné par

R,RpRy R,

RM I e 4M3 (R‘xﬁMA; RﬁZMBJ etC.) *

J. Quoniam, St-Etienne, France

Liosung: Es seien a; die Seiten und P;; = a,a; die Ecken des gegebenen vollstin-
digen Vierseits. Das Dreiseit a;a,a, (= Dreieck B, P, P,) habe den Umkreis ¢; mit
dem Mittelpunkt C; und dem Radius 7, (7,7, %,0=1,2,3,4). Die vier Kreise ¢; gehen
durch den Miquel-Punkt M. Der Fusspunkt des von M auf a, gefdllten Lotes sei 4,
und seine Linge R.= MA,. Die vier Punkte A, liegen auf der Simson-Geraden s.
Der durch M und die vier Punkte C, gehende Miquel-Kreis cps habe den Mittelpunkt
Cyr und den Radius Rjps. Die Kreise cpr und ¢, schneiden einander in M und N,.

Da der Kreis ¢pr durch die Punkte M und N, des Kreises ¢, und durch dessen
Mittelpunkt C, geht, sind die Bogen MC, und C N, von ¢y gleich lang und somit
die Peripheriewinkel MC,C, und C,C,N, von ¢y gleich gross. C,C, ist also Sym-
metrale des Winkels MC,N,. Die Schnittpunkte M und P, der Kreise ¢, und ¢,
liegen zu C,C, spiegelbildlich. Daher ist C;C, auch Symmetrale des Winkels MC,F,
und somit liegen P,,, C; und N, auf einer Geraden. Der Winkel M N,F,, ist daher
zugleich ein zum Bogen MC, von ¢y und ein zum Bogen M P, von ¢, gehériger
Peripheriewinkel, und folglich sind auch die zugehdérigen Zentriwinkel MCyC, und
MC,P,, gleich gross. Analoge Beziehungen gelten fiir die ebenfalls auf dem Kreis ¢,
liegenden Punkte P, und P, und die korrespondierenden Punkte C, bzw. C, von
cy. Demnach sind die Sehnenvierecke MC,C,C, und MPF, P, F,, gleichsinnig dhn-
lich. Die Spiegelbilder P,,, B,,, F,, von M beziiglich der Seiten des Dreiecks C,C,C,
liegen auf a,. Daher liegen die Fusspunkte der Lote aus M auf die Seiten des Drei-
ecks C,C,C, auf der zu a, parallelen Geraden s,, die von M den Abstand R,/2 hat.
s, ist die Simson-Gerade des Dreiecks C,C,C, beziiglich des auf seinem Umkreis
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liegenden Punktes M. Da somit in den durch M C,GC, und MP,, PP, festgelegten
dhnlichen Feldern die Simson-Geraden s, und s einander entsprechen, so verhalten
sich entsprechende Lingen wie die Abstinde des Punktes M von s , und s, also wie
R,: 2, oder wie die Umbkreisradien Ryp:7,, woraus Ry = r, R /2 u folgt.

Sind M und M, Gegenpunkte auf ¢,, so sind die Winkel MPFP A4, und MM,FP,,
als Peripheriewinkel iiber dem Bogen MP,, von ¢, gleich gross. Demnach sind die
rechtwinkligen Dreiecke M P,, 4, und MM, P,, dhnlich, und es ist ry=MP, MP,J2R,.
Die Winkel MP,4, und MA,0 sind als Peripheriewinkel iiber dem Bogen
MA, des Kreises mit dem Durchmesser M P,, gleich gross. Somit sind die recht-
winkligen Dreiecke M P,,4, und M A,0 ihnlich, und es ist M P,= R,R,/u und ana-
log MP,,= R,R,/u. Aus den obigen Formeln erhilt man zunichst 7y= R R,R,[2u?
und schliesslich Rpr = R, R,R, R [4 3. K. Griin, Linz (Donau), Osterreich

Eine weitere Losung sandte G. Bercea (Miinchen, BRD).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis 10. August 1975. Dagegen ist die Einsendung von Lésungen zu den mit
Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelést: Problem 601 A (Band
25, p. 67), Problem 625B (Band 25, p. 68), Problem 645 A (Band 26, p. 46), Problem
672A (Band 27, p. 68), Aufgabe 680 (Band 27, p. 116), Problem 724 A (Band 29,
p. 99).

Aufgabe 733. Let n be a positive integer > 2. Let L be a line which intersects

the (# - 1)-dimensional hyperplanes containing the (# — 1)-dimensional faces of a

given n-dimensional simplex of vertices 4, ({=1,...,%+1) in the uniquely deter-

mined points B,. Prove that the n-dimensional volume of the convex hull of the

midpoints of 4,B, is zero. This extends the known results for # — 2, 3 for which the
midpoints are collinear and coplanar, respectively.

M. S. Klamkin, Dearborn, Michigan, USA

Aufgabe 734. In einem ebenen Dreieck mit den Seiten a, sei R der Umkreis-
radius und r der Inkreisradius. Man zeige, dass
O9R  4r 2(al+ 4} + a))

A > 10
7 R ay ay dy -

mit Gleichheit genau fiir das gleichseitige Dreieck.
E. Braune, Linz, Donau, Osterreich

Aufgabe 735. C bezeichne die Menge der komplexen Zahlen. Es sei 4 e C be-
liebig und ¢ die durch ¢ (z): = (d — z)~! erkldrte Abbildung von Cuy {oo} in sich, wo-
bei g(oo) =0 und ¢(d) = oo gelte. Man finde notwendige und hinreichende Bedin-
gungen fiir die Konvergenz der durch

by e Cu {oco} beliebig; b, ,=¢(®,) #n =1)
erklirten Folge von Elementen von € U {oc} und bestimme im Falle der Existenz
lim, . b,. J. Binz, Bern
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Aufgabe 736. Man beweise, dass fiir jedes nichtkonstante Polynom f mit ganz-
zahligen Koeffizienten die Reihensumme
f 1
A= [f{n), ..., £(1)]
existiert und irrational ist, wobei bei der Bildung des kleinsten gemeinsamen Viel-
fachen [f(n),...,f(1)] eventuelle Werte Null von f zu ignorieren sind.
P. Erdés, Budapest, Ungarn

Bericht

VIII. Osterreichischer Mathematikerkongress
Wien, 17.-21. September 1973

Der Einladung zum VIII. Osterreichischen Mathematikerkongress folgten dies-
mal rund 700 Mathematiker aus 28 Lindern; auch ein kleines Schweizerkontingent
war vertreten. Der Kongress tagte in den Neubauten der Technischen Hochschule
in Wien.

Die feierliche Er6ffnung vollzog sich mit echt wienerischem Charme im Audi-
torium Maximum der Hochschule am Getreidemarkt: Den Damen wurde beim Be-
treten des Raumes eine Riesennelke iiberreicht, und zwischen den iiblichen Begriis-
sungsansprachen spielte ein kleines Kammerorchester mit Schubertschen Tédnzen
auf. Schwerpunkt der Eréffnungsfeier war ein Vortrag des Vorsitzenden der Oster-
reichischen Mathematischen Gesellschaft, Prof. Dr. H. Stetter (TH Wien), {iber das
Thema «Mathematik in der Gesellschaft von heute». In recht humorvollen und ge-
wandten Worten versuchte Stetter eine Gegeniiberstellung der Denkweisen 1n
Bereichen der Mathematik und der Soziologie. Bei der Zunft der Soziologen — Stetter
bezeichnete sie als die modernen Sittenrichter - zdhlt die Mathematik mit ihren
harten Methoden bekanntlich zum schaurigen Instrumentarium der reaktionidren
Unterdriickung. Der Mathematikunterricht macht jedem Schiiler vor, dass eine Aus-
sage oder ein Ergebnis entweder richtig oder falsch ist. Aber wo kime man in den
Augen der Soziologen hin, wenn solche Kriterien zum Malstab erhoben wiirden ?
Beweist nicht jeder Politiker, dass es nur auf den Standpunkt ankommt, ob eine
Aussage grandios oder verwerflich ist. Wo kdime man hin, wenn man seine Formu-
lierungen so sorgfiltig und prédzis wihlen miisste, dass es nicht méglich wire, am
ndchsten Tag zu behaupten, man habe genau das Gegenteil sagen wollen, man sei
nur falsch verstanden worden. Prof. Stetter konnte auch noch eine weitere Forderung
der Mathematik aufzeigen, die sich im modernen Getriebe recht altmodisch aus-
nimmt: Die Tatsache, dass eine Aussage auch bewiesen werden muss. Wo bliebe die
dialektische Schulung, wo die rhetorische Uberzeugungskraft, wenn die Ange-
sprochenen nicht nur eindrucksvolle Worte, sondern stichhaltige Begriindungen
verlangten 7 Immer wieder muss man erleben, dass unbewiesene Behauptungen
glaubhaft werden, wenn sie nur oft genug wiederholt werden. Der Mathematiker
muss sich schliesslich auch noch die Frage gefallen lassen, ob die Gepflogenheiten in
seinem Fach nicht in unmittelbarem Widerspruch zum demokratischen Grundprinzip
der Giiltigkeit von Mehrheitsentscheidungen stehen. Durch keine Abstimmung
kann doch 7 zu einer rationalen Zahl erklart werden. Das Verdammungsurteil der
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