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10 Kleine Mitteilungen

Py and P} respectively denote the x — v and » — z subpaths of P,. Then, Py has the
same length as P. Hence, the paths P, B/, and {w, x}> constitute a # — w walk of
at most e(z). Since this is impossible, it must be the case that u € Z(G). As such, the
theorem follows.

As a special case of the preceding theorem, we have the following corollary.

Corollary 10. If a graph G is randomly eulerian from any vertex, then the center
Z(G) induces a connected subgraph.

John Roberts, Western Michigan Univ., Kalamazoo, USA
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Kleine Mitteilungen
When is the divisibility relation in a monoid a partial ordering?
1. Let (M, -, ¢> be a monoid, i.e., a semigroup (M, -> with an identity element
e. We define the divisibility velation < in M by
x,yeM;x <y (¢> xu=y forsome ucM.

By a non-trivial group we mean a group consisting of two or more elements.
For x € M, we denote the principal right ideal {xu; « € M} by xM. It is easily seen
that, for arbitrary x, y € M,

x <y o yM < xM s yvexM (1)

and that < is reflexive and transitive. SHwU-YENG T. LIN [5] raised the problem
to find a necessary and sufficient condition on M for < to be a partial ordering. In
this note we present an answer to this question and several remarks about it.

2. Criterion 1: For a monoid (M, -, e}, the following statements are equivalent:
* x,u,veM;xuv =x - 2u = x,

(*) x,veM;xM =yM —>x =y,

(*") the divisibility relation < in M is a partial ordering .

Proof: (*) — (*'): Assume that xM = yM. Then x = xe € xM = yM and, anal-
ogously, ¥ € xM. Therefore there exist #, v € M such that vy = xu, x = yv, hence
xuv = x, and (*) implies xu = x, i.e.,, ¥ = y. — (*) = (*"): Suppose that x < y and
y < . From (1) we conclude xM = yM, and by virtue of (*') we get x=1v. — (¥) —
(*): Let be xuv = x. Then xu < rvand ¥ < xu, and antisymmetry yields xu = x.
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Corollary 1: The following conditions are necessary for < to be a partial ordering:

M has no non-trivial subgroups. (2)
uveM,uww=¢c—->u=v=c. (3)
The subgroup U of invertible elements of M is {e} . (4)
(M, -, e> is not a non-trivial group . (5)

Proof: (2): Assume that M has a non-trivial subgroup L with identity element
¢’ (notice that ¢ need not be equal to ¢; c¢f. Remark 6 below). Let be u € L,
u + ¢'. Then ¢'uu? = ¢', but e'u = u + ¢, a contradiction to (*). - (3): Let be uv = ¢,
hence euv = e. (*) implies eu = ¢, i.e., # = e. Now uv = e yields v = e. — (4) follows
from (3) and (5) from (4). For (5) in this connection see [1], p. 176, Theorem 6.

On the other hand, it is quite natural to ask for what familiar classes of monoids
condition (*) does hold. (M, -, ¢ is called

left cancellative if, for any x, y, 2 € M, xy = xz implies y = z, (6)
tdempotent if xx — x for any x e M . (7)

Corollary 2: Each of the following two conditions a), b) is sufficient for < fo be
a partial ordeying:

a) (4) and (0) (see also [6], p. 123),
b} (7) and commutativity of - .

Proof: a) xuv = x implies (xu)vu = xu, and (6) leads to uv = e, vu = ¢, i.e., by
virtue of (4), to v = ¢. Therefore xu = xuv = x. Thus, (*) holds. -~ b) xuv = x and (7)
imply xux = xu(xuv) = (xuxu)v = (¥u)v = xuv — x. With the additional help of com-
mutativity we get xu == xxu = yux = x.

3. Remark 1: Any semilattice (with or without identity element), i.e., any com-
mutative idempotent semigroup, satisfies (*) (see [2], p. 22, Lemma 2); reflexivity is
ensured by (7). For idempotent semigroups the divisibility relation equals the so-
called natural partial ordering <, defined by x <, v: <> xy =y ([3], p. 23-24).

Remark 2: Condition a) in Corollary 2 is not necessary for (*}: Let E be a non-
empty set and P(E) the collection of all subsets of £. Then the monoid (PB(F), U, ¢>
is a semilattice, so satisfies (*). But it is not left cancellative. Here < is set-theore-
tical inclusion.

Remark 3: Condition b) in Corollary 2 is not necessary for (*}: Let N denote
the set of positive integers. Then (N, -, 1) satisfies (4) and (6), thus (*) holds. Here
< turns out to be the usual divisibility relation in N. Since (N, -, 1) 1s not idem-
potent, we have a negative answer to an additional question in [5].

Remark 4: Let be E = {a, b} (@ = b). Let ¢, a, b mappings from E into E, namely:
e identical, a(E) = {a}, b(E) = {b}. If M = {e, a, b}, and if we define - in M by xy
1= 40 x, then (M, -, &> is an idempotent noncommutative monoid; it is not left can-
cellative, but (2) and (3) hold: The subgroups of M are {¢}, {a}, and {b}. The equations
aba = a, ab = bviolate (*). Therefore none of the conditions (2), (3), (7) and of their

conjunctions is sufficient for (*). However, in the commutative case, (7) is (Corol-
lary 2b)).
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Remark 5: (6) does not imply (*): Consider a non-trivial group M and notice
that (*) implies (5). Here < is the universal relation on M: x < y for any x, y € M.

Remark 6: Even for commutative monoids, (3) is not sufficient for (*): For
any real number @ denote the matrix (22) by m,. For e: = (19) , M: ={e,m,;ac R}
and the usual matrix multiplication, (M, -, ¢> is a commutative monoid satisfying
(3). But {m,; a € R\{0}} forms a non-trivial subgroup of M, its identity element being
My, S0 M does not satisfy (2), a fortiori not (¥).

4. Finally we discuss the question about necessary and sufficient conditions on
the monoid (M, -, ) for < to have other important properties. The proofs of the
following three criteria are left to the reader.

Criterion 2: The following statements are equivalent:

%YyEM — xM N yM + ¢,i.e., M is left reversible ([4], p. 194), (8)

£, yeM — x =<z vy < zforsome ze M (Moore-Smith property) . (8')

Commutativity of - is sufficient for (8) but by no means necessary: Consider a
non-abelian group.

Criterion 3: The following statements are equivalent:
v,yeM — {x,y} NxM NyM + ¢, (9)
¥, ye€M — x <y andfor y < x. (9%)

Criterion 4: The following statements are equivalent:
v, YeEM — xM N yM =:M forsome zeM, (10)
x,yeM — x <z and vy <2z forsome zeM, and
weM,x <w,y <w imply z <w. (10")
Evidently, (9) implies (10), and (10) implies (8). (9), (10}, (8) correspond to the
situations in totally ordered, semilattice-ordered and directed sets, respectively.

Corollary 3: Let <M, -, ) be a monoid for which (*) and (10) hold. Then there
exists a binary operation * on M such that

a) (M, *, e> s a commutative idempotent monoid,

b) the divisibility relations <’ and < in (M, * , e)> and (M, - , > are the same.

Proof: a) Let x, y be arbitrary elements of M. By (10), there exists z € M such
that xM O yM = zM. By (*'), z is uniquely determined by x and y. Thus * is well-
defined by

x*y=2z where xM N yM =M.

Therefore, the mapping f : M — {xM; x € M} defined by f(x) = xM for every
x € M is bijective and has the property f(x * ) = f(x}) O f(y) ((M, *, ¢)> is the ‘trans-
plant’of {{xM; x € M}, O, M > under f~1; see [7], p. 43/44). Since {xM;xe M}, N, M)
is a semilattice with identity, so is <M, * , > (For a different proof cf. [2], p. 10,
Corollary). — b) For arbitrary elements x, y € M we have ¥ <’y «>x * 4 = y for some
ueM «>xM NuM = yM for some u e M <>yM < xM <«>x <y, the last step being
ensured by (1).
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Remark 7: Of course, x * y = sup {x, ¥} with respect to <. For (N, -, 1> (N the
set of positive integers), * is the least common multiple operation, and both opera-
tions - and * lead to the usual divisibility relation. J. Rédtz, Bern
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A formula for the least prime greater than a given integer

We shall prove the following theorem, which gives an apparently new formula
for the nth prime p,.

Theorem. Let m be any natural number = 2. Put
d=((mh)™ —1, 2m)!),

dd
‘T ay
and define o by the condition d*||¢. Then the integer
d
P= W)

1s the least prime greater than m.

In particular, taking m = p, _;, we see that $ = $,. So, in principle, this formula
enables us to compute p, once p, _; is known. Of course the result is purely of theo-
retical interest, since even computing the number 4 (by the Euclidean algorithm) is,
in general, completely impractical.

Some years ago Gandhi (see [1]) proved the following result: if Q is the product
of the first # — 1 primes, then the inequality

1< 2?n [——%«I—‘%(Ef(j)i)] <2

(u denotes the Mobius function) gives p, explicitly in terms of p,, --+, $,_4. There are
also older formulas for p, (see [2, p. 344], [3]).

Lemma. The representation of 4 as a product of primes is
d=qfs g (n21),
where m < ¢, < q, <--» < ¢, < 2m and ¢, is the least prime p > m.

Proof. Obviously d is square-free, and each of its prime factors is between m
and Zm. Thus we have only to show that 4 is divisible by p, the smallest prime which
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exceeds m. By Bertrand’s theorem [2, p. 343] m < p < 2m. Therefore, if m > 3,
@(p) = 2((p — 1)/2] | m!, so that Euler’s theorem gives (m!)™' = 1 (mod ). It is easy
to see that this congruence also holds for m = 2, 3. Since p | (2m)! the proof of the
lemma is complete.

Proof of the theorem. For i =1, .--, n, the exponent ¢, of the highest power of ¢,
which divides 4!, is

2 [d 2 d
6,-22[“-‘] <£§i <d

—1lLe
[2, p. 342]. Since for1 <7< —1
[ d ] d d [d]
‘‘‘‘‘‘‘‘‘‘‘ BoE < — == s
[ i+ 1 9i1 q; q;

[ d ] d )
)= Ll iz,

we haved > e; > ¢, > - - - > ¢,. Hence t = g2V g2 . .. g% where 0 < a(l) < a(2)
<+ -+ < a(n). This completes the proof.
Retjo Ernvall, University of Turku, Finland
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Aufgaben

Aufgabe 709. It is well known (cf. e.g. H. Hadwiger, H. Debrunner, V. Klee,
Combinatorial Geometry in the Plane, New York 1964, p. 4, Problem 5) that no three
distinct points of a square lattice can be the vertices of an equilateral triangle. Show
that no four distinct points of an equilateral triangular lattice can be the vertices of a
square. M. S. Klamkin, Dearborn, Michigan, USA

Erste Lésung: Wir beweisen allgemeiner den folgenden Satz:

Ein rechtwinkliges Dreieck kann genau dann in ein regulires Dreiecksgitter
eingelagert werden (d.h., die Ecken sind Gitterpunkte), wenn das Verhiltnis seiner
Katheten die Form r)/ 3 mit einer positiven rationalen Zahl » hat.

Daraus folgt unmittelbar die Behauptung der Aufgabe 709, aber z.B. auch der
Satz: Kein pythagordisches Dreieck kann in ein regulires Dreiecksgitter eingelagert
werden.

Bewers: 1. @ und b seien zwei Einheitsvektoren, die das Gitter aufspannen,
a-b=1/2. A, B und C seien drei verschiedene Gitterpunkte, die ein bei C recht-
winkliges Dreieck bilden. Ist dann etwa BC=xa+yb, CA=ua+vb mit ganzen
Zahlen x, y, u, v, so ist BC-CA =0, folglich x (2u + v) + vy (u+ 2v) = 0. Es gibt also
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