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Vertex Cyclic Graphs
§ 1. Definitions

In the following, we consider graphs which are finite, undirected, loop-free, and
without multiple edges.

Let » and v be vertices of a graph G. A # — v walk in G is an alterating sequence
of vertices and edges beginning with #«, ending with v, and such that each edge is
incident with the vertices immediately preceeding and succeeding it. A # — v walk
is open if u + v and closed if u = v. A frail is a walk without repeated edges and a
path is a trail without repeated vertices. A circuit is a closed trail and a cycle is a
circuit in which the intermediate vertices are not repeated.

A graph is connected if there is a walk joining every pair of vertices. A component
of a graph G is a connected subgraph not properly contained in any other connected
subgraph of G. A vertex v of a graph G is a cut-vertex of G if G — v has more com-
ponents than does G. A graph G is a block if it is connected and has no cut-vertex.
A block of a graph G is a subgraph of  which 1s maximal with respect to being a
block.

Let V(G) and E(G) denote respectively the vertex and edge sets of a graph G.
For vertices # and v of G, let the distance dg{u, v) between u and v be the length of a
shortest # — v path. The eccentricity e(v) for v e V{(G) is e(v) = max {dg(n, v) : u € V{(G)}
and the radius rad G of G is rad G = min {e(v) : v € V(G)}. The center Z(G) of G is
Z(G) = {veV(G) : e(v) = rad G}.

In general, we will follow the conventions of Behzad and Chartrand [2].

§ 2. Randomly Eulerian graphs

Although we will consider ‘randomly eulerian’ graphs only to the extent that
they exist in a larger class of graphs, they are introduced here for perspective and
to illustrate the property we will investigate.

Let G be a connected graph. An eulerian trail in G is an open trail of G containing
all edges of G and an eulerian circuit of G is a circuit of G which contains all edges
of G. The graph G is eulerian if it has an eulerian circuit. Also, G is randomly eulerian
from a vertex v if each trail with initial vertex v can be extended to an eulerian v — v
circuit of G.

Euler [3] characterized eulerian graphs and Ore [4] characterized graphs which
are randomly eulerian from a vertex. In particular, if the degree deggv of v € V(G) is
the number of edges in G incident with the vertex », then we have the following
well-known propositions.

Proposition 1. A connected graph is eulerian if and only if each vertex has even
degree.

Proposition 2. A connected graph has an eulerian trail if and only if it has
exactly two vertices of odd degree.

Proposition 3. An eulerian graph is randomly eulerian from a vertex v if and
only if v belongs to every cycle of G.
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It is a property inherent in the third proposition in which we are most interested
and will pursue in the next section.

§ 3. Vertex cyclic graphs

A connected graph G with only cyclic blocks is vertex cyelic 1f it has a vertex
which belongs to every cycle of G. In particular, a vertex cyclic graph G is v-cyclic
if v is a vertex belonging to each cycle of G. To see that non-eulerian vertex cyclic
graphs exist, it suffices to consider the complete bipartite graph K {2, 3)

Noting that a (p, ¢)-graph is a graph with $ vertices and g edges, we have the
following result.

Theorem 1. 1t G is a v-cyclic (p, g)-graph, then ¢ < 2p — 3.

Proof: The graph G — v is a forest with p — 1 vertices and at most P — 2 edges.
Since » can be adjacent to at most p — 1 vertices, G can have at most 2 P — 3 edges.

For a graph G, let A(G) and §(G) respectively denote the maximum and minimum
degree among the vertices of G. Another consequence following from the proof of
Theorem 1 is presented below.

Corollary 2. 1f G is vertex cyclic, then §(G) = 2.

In {1}, Bibler showed for a graph G randomly eulerian from a vertex v that
degev = A(G). We now generalize this result by showing this is a property of vertex
cyclic graphs.

Theorem 3. If G is a v-cyclic graph, then deggv = A(G).

Proof: Since H = G — v is a forest, we have that A(H) does not exceed the number
n of end-vertices of H. In G, the vertex v is adjacent to each end-vertex of H , thus,
A(H) < n < deggv. Furthermore, for » € V(H), degeu = deggu if uv ¢ E(G) and deggu
= 1 + deggu if uv € E(G). In any event, deggu < deggv for all u € V(H) since the
only edges in G which are not in H, are those edges joining v to some vertex in H.
We may now obtain the following result.

Theorem 4. If G is a v-cyclic graph and deggw = A(G) for some w € V(G) — {v},
then G is also w-cyclic and degeu = §(G) for all u € V(G) — {v, w}.

Proof: 1f G is a cycle, then the theorem follows. So, suppose G is not a cycle.
Let n be the number of end-vertices of the forest H = G — v. Then, deggw = degqv = n.

We now show that degyw = n. Since H is acyclic, we have that deggw < . So,
suppose deguw < n. Then the edge vw must be in E(G) and we have that # > 1 -+
deggrw = deggw = degev > #. Thus, w is an end-vertex of H. Hence, deg gw = 1 which
implies that A(G) = degev = degew = 2. As such, G must be a cycle and this is a
contradiction. Thus, deggw = #.

Since deggw = n, H is a tree. Also, degew = n implies all vertices of H different
from w have degree at most two in H. As such, every path joining two distinct end-
vertices of H must contain ». Furthermore, degew = degqv implies that v is adjacent
to only end-vertices of H and possibly w. Consequently, every vertex of G different
from v and w has degree 6(G) = 2 and w lies on every cycle of G.

As an immediate consequence of the preceding two results, we have the following.
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Corollary 5. A graph is vertex cyclic from at least three vertices if and only 1if it
1s a cycle.

A property which is inherent in the eulerian situation, but not for vertex cyclic
graphs in general, is presented below.

Lemma 6. If G is randomly eulerian from a vertex v and 7 is any trail with
initial vertex v, then G — E(T) has at most one nontrivial component.

Proof: If T is a circuit, then each nontrivial component of G — E(T) is eulerian
and, as such, contains a cycle which in turn contains v. Hence, G — E(T) has at most
one nontrivial component and it contains v. If T is not a circuit, then we can extend
T by a path P to yield a circuit 7”. Let H, be the component of G — E(T”) containing
v. Then, any other component of G — E(T") is trivial. Also, G — E(T)is G — E(T")
together with the path P. Hence, given any component of G — E(7) not containing
v, it must be trivial. Thus, the lemma follows. '

A vertex cyclic graph G A circuit T of G

Figure 1

To see that the result in Lemma 6 does not generalize to all vertex cyclic graphs,
it suffices to consider the vertex cyclic graph G and the circuit 7 of G in Figure 1.
Then, G — E(T) has two nontrivial components, neither of which contain v. How-
ever, there do exist noneulerian vertex cyclic graphs with this property. In fact,
the following theorem characterizes all such vertex cyclic graphs.

Theorem 7. Let G be a v-cyclic graph. Then, G — E(7) has at most one nontrivial
component for each trail T with intial vertex v if and only if:

a) G is vertex cyclic from exactly two vertices; or
b) G is eulerian.

Proof: The sufficiency of a) or b) follows from Theorem 4 and Lemma 6 respec-
tively. To show the necessity of a) or b), we show that if G is noneulerian and vertex
cyclic from only v, then G has a trail 7 with initial vertex v such that ¢ — E(T) has
at least two nontrivial components. We now consider the following two cases.

Case 1. Suppose G has a block B with at least two vertices different from v and both
of odd degree. Then, there exist vertices # and w in B of odd degree together with a
u — w path P containing neither v nor any other odd vertex.

For each edge ¢ in G — E(P) incident with a vertex x in P, there is an x — v
path P, in G — E(P). Also, for each pair of edges ¢, and ¢, in G — E(P) incident with
a vertex x in P, the paths P, and P, have only x and v in common. Since each
vertex x of P has even degree in G — E(P), we may pair them to form cycles, the
union of which is a » — v circuit C, which exhausts the edges in ¢ — E(P) incident
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with x. Also, if P, and P, correspond to edges ¢, and ¢, incident with distinct vertices
x, and x, respectively, then P, and P, have only v in common. Consequently, the
v — v circuits €, and C,_ have only v in common if x; + x,. Thus, the union T of all
the circuits C, x € V(P), is a v — v circuit in G — E(P) exhausting all the edges in
G — E(P) incident with vertices of P.

Let C be a cycle in T containing w. Then C has an edge xv incident with v but
not with w. Then T — xv has a v — x trail T’ exhausting the edges in G — E(P)
incident with vertices of P. Thus, the paths P and x, v must be in different com-
ponents of G — E(T7).

Case 2. Suppose G has a block B with exactly one vertex w different from v and of
odd degree. Necessarily, the vertex v must also be of odd degree in B.

Suppose G is not a block. Let # be a vertex of B different from v and adjacent
to w. Then, B — uw is connected and has » and v as its only vertices of odd degree.
By Proposttion 2, B — uw has an eulerian # — v trail 7. Let B’ be any block of G
different from B. Then the path «, w and the block B’ lie in different components of
G — E(T).

Conversely, suppose G = B. Since G is not w-cyclic, there is a cycle C in G not
containing w. Since w can be adjacent to atmost one vertex of C — v, there is a vertex
¥ in & — V(C) adjacent to w. Note that G — E(C) has only one nontrivial component
H and H — axw has only two vertices of odd degree; in particular, x and v are of odd
degree. By Proposition 2, H — xw has an eulerian v — x trail 7. Since T exhausts the
edges in G — xw incident with x and w, the path «, y and the cycle C lie in different
components of G — E(T).

We now consider the center of a vertex cyclic graph and show that it must
contain any vertex for which the graph is vertex cyclic.

Theorem 8. If G is a v-cyclic graph, then v € Z(G).

Proof: Let u e V(G) be such that d¢(#, v) = eg(v) and suppose « is in block B of G.
If B # G, then for each w € V(G) — V(B) we have that eg(w) > dg(w, ) = dg(w, v) +
dg(v, u) > dg{v, u) = e(v) since v can be the only cut-vertex of G. In any event,
Z(G) < V(B) since e(z) < e(v) for all z € Z(G).

Since # and v are in a block, there exists a cycle containing # and v. Let C be a
smallest such cycle. Given any two vertices of C and a diagonal path joining them,
the path must contain v. Since C is a smallest cycle, we have rad C = eg(v). Thus,
ec(x) = rad C for each x € V(C). Since there are no shorter paths in G joining any two
vertices of C, we also have ¢g(x) = ec(x) for all x € V(C).

Figure 2
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If B = C, we are done. So, suppose B + C. Let w € V(B — C). Then there is
exactly one path P not containing v but joining w to C. Suppose P joins C at the
vertex x. Let H = G — E(C) and let w, be the vertex on P — x closest to ¥ which mini-
mizes dp(w, w,) + dg(w,, v). Let P; be the w; — x subpath of P and let P, be a
shortest wy — v path in H. Clearly, P, and P; have only w; in common. Let P; be a
shortest x — v subpath of C containing #. Then P, P, and P; form a cycle C,; (cf.
Figure 2) and rad €, > rad C. As such, there is a vertex s € V(P,) such that d¢,(w,, s)
> rad C. By our choice of w,, there is no shorter s — w, path in G and we have that
e(w) = d{w, s) = d(w,, s) = rad C > e{v). Hence, it follows that v € Z(G).

Given a set 7 of vertices of a graph G, the induced subgraph (V> of G has vertex
set V and edge set E = {uv € E(G) : u, v € V}. It is well known that the center need
not induce a connected subgraph. This is also the case for eulerian graphs. In partic-
ular, the graph in Figure 3 is eulerian, has center {#, v}, and {{u, v}) is not connected.
However, this is not the case for vertex cyclic graphs.

Figure 3

Theorem 9. 11 G is a vertex cyclic graph, then Z(G) is connected.

Proof: Suppose G is v-cyclic. If Z(G) = {v} or dg(v, 2) < 1 for all ze Z(G), then
the result follows. So, suppose there is a z € Z(G) such that dg(v, 2) > 2 and let P be
any shortest v — z path. It suffices to show V(P) < Z(G). To show this, it suffices
to prove that the vertex w adjacent in P to z is also in Z(G). Let P, be the v — u
subpath of P. This is shown in Figure 4, the remainder of which we will construct in
the following.

Figure 4

% w

Suppose # ¢ Z(G). Since z € Z(G) and uz € E(G), we have that e(u) = e(z) + 1. Let
w € V(G) be such that d(u, w) = e(u). Then, v + w = z and d(w, 2) = ¢(2).

Let P, be a shortest x — w path. Since & is v-cyclic, v is the only vertex which
P, and P, can have in common. In this case, the z — v subpath P, of P, is of the
same length as P. Hence, P, together with the v — w subpath of P, is a # — w walk
of length e(z). Since this is impossible, the paths P, and P, are disjoint.

Since deggw > 2, there is a vertex x adjacent to w but not on P,. Then, dg(x, 2) <
¢(z). Let P, be a shortest x — z path. Clearly, w ¢ VV(F,) and v must be on P,. Let
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Py and P} respectively denote the x — v and » — z subpaths of P,. Then, Py has the
same length as P. Hence, the paths P, B/, and {w, x}> constitute a # — w walk of
at most e(z). Since this is impossible, it must be the case that u € Z(G). As such, the
theorem follows.

As a special case of the preceding theorem, we have the following corollary.

Corollary 10. If a graph G is randomly eulerian from any vertex, then the center
Z(G) induces a connected subgraph.

John Roberts, Western Michigan Univ., Kalamazoo, USA
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Kleine Mitteilungen
When is the divisibility relation in a monoid a partial ordering?
1. Let (M, -, ¢> be a monoid, i.e., a semigroup (M, -> with an identity element
e. We define the divisibility velation < in M by
x,yeM;x <y (¢> xu=y forsome ucM.

By a non-trivial group we mean a group consisting of two or more elements.
For x € M, we denote the principal right ideal {xu; « € M} by xM. It is easily seen
that, for arbitrary x, y € M,

x <y o yM < xM s yvexM (1)

and that < is reflexive and transitive. SHwU-YENG T. LIN [5] raised the problem
to find a necessary and sufficient condition on M for < to be a partial ordering. In
this note we present an answer to this question and several remarks about it.

2. Criterion 1: For a monoid (M, -, e}, the following statements are equivalent:
* x,u,veM;xuv =x - 2u = x,

(*) x,veM;xM =yM —>x =y,

(*") the divisibility relation < in M is a partial ordering .

Proof: (*) — (*'): Assume that xM = yM. Then x = xe € xM = yM and, anal-
ogously, ¥ € xM. Therefore there exist #, v € M such that vy = xu, x = yv, hence
xuv = x, and (*) implies xu = x, i.e.,, ¥ = y. — (*) = (*"): Suppose that x < y and
y < . From (1) we conclude xM = yM, and by virtue of (*') we get x=1v. — (¥) —
(*): Let be xuv = x. Then xu < rvand ¥ < xu, and antisymmetry yields xu = x.
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