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Vertex Cyclic Graphs

§ 1. Definitions

In the following, we consider graphs which are finite, undirected, loop-free, and
without multiple edges.

Let u and v be vertices of a graph G.A«-» walk in G is an alterating sequence
of vertices and edges beginning with u, ending with v, and such that each edge is
incident with the vertices immediately preceeding and succeeding it. A u — v walk
is open if u 4= v and closed if u v. A trail is a walk without repeated edges and a

path is a trail without repeated vertices. A circuit is a closed trail and a cycle is a

circuit in which the intermediate vertices are not repeated.
A graph is connected if there is a walk joining every pair of vertices. A component

of a graph G is a connected subgraph not properly contained in any other connected
subgraph of G. A vertex v of a graph G is a cut-vertex of G if G — v has more
components than does G. A graph G is a block if it is connected and has no cut-vertex.
A block of a graph G is a subgraph of G which is maximal with respect to being a
block.

Let V(G) and E(G) denote respectively the vertex and edge sets of a graph G.

For vertices u and v of G, let the distance da{u, v) between u and v be the length of a
shortest u — v path. The eccentricity e(v) for ve V(G) is e(v) max{ig(#, v) : ue V(G)}
and the radius rad G of G is rad G min {e(v) : v e V(G)}. The center Z(G) of G is

Z(G) {ve V{G) : e{v) rad G}.
In general, we will follow the Conventions of Behzad and Chartrand [2].

§ 2. Randomly Eulerian graphs

Although we will consider 'randomly eulerian' graphs only to the extent that
they exist in a larger class of graphs, they are introduced here for perspective and
to illustrate the property we will investigate.

Let G be a connected graph. An eulerian trail in G is an open trail of G containing
all edges of G and an eulerian circuit of G is a circuit of G which contains all edges
of G. The graph G is eulerian if it has an eulerian circuit. Also, G is randomly eulerian
from a vertex v if each trail with initial vertex v can be extended to an eulerian v — v
circuit of G.

Euler [3] characterized eulerian graphs and Ore [4] characterized graphs which
are randomly eulerian from a vertex. In particular, if the degree degav of v e V(G) is
the number of edges in G incident with the vertex v, then we have the following
well-known propositions.

Proposition 1. A connected graph is eulerian if and only if each vertex has even
degree.

Proposition 2. A connected graph has an eulerian trail if and only if it has

exactly two vertices of odd degree.

Proposition 3. An eulerian graph is randomly eulerian from a vertex v if and
only if v belongs to every cycle of G.
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It is a property inherent in the third proposition in which we are most interested
and will pursue in the next section.

§ 3. Vertex cyclic graphs

A connected graph G with only cyclic blocks is vertex cyclic if it has a vertex
which belongs to every cycle of G. In particular, a vertex cyclic graph G is v-cyclic
if v is a vertex belonging to each cycle of G. To see that non-eulerian vertex cyclic
graphs exist, it suffices to consider the complete bipartite graph K{2, 3).

Noting that a (p, ?)-graph is a graph with p vertices and q edges, we have the
following result.

Theorem 1. If G is a v-cyclic (p, ^)-graph, then q < 2p — 3.

Proof: The graph G - v is a forest with p-1 vertices and at most p - 2 edges.
Since v can be adjacent to at most p-\ vertices, G can have at most 2p - 3 edges.

For a graph G, let A (G) and d{G) respectively denote the maximum and minimum
degree among the vertices of G. Another consequence following from the proof of
Theorem 1 is presented below.

Corollary 2. If G is vertex cyclic, then ö(G) 2.
In [1], Babler showed for a graph G randomly eulerian from a vertex v that

degGy A(G). We now generalize this result by showing this is a property of vertex
cyclic graphs.

Theorem 3. If G is a y-cyclic graph, then degGw A(G).

Proof: Since H G — v is a forest, we have that A (H) does not exceed the number
n of end-vertices of H. In G, the vertex v is adjacent to each end-vertex of H, thus,
A(H) <n < degGv. Furthermore, for u e V(H), degGw degHu if uv $ E(G) and degGw

1 + degi/w if uv e E(G). In any event, degGw < degGz; for all u e V(H) since the
only edges in G which are not in H, are those edges joining v to some vertex in H.

We may now obtain the following result.

Theorem 4. If G is a ü-cyclic graph and degG„> A{G) for some w _ V(G) - {v},
then G is also w-cyclic and degGu d(G) for all u e V(G) - {v, w}.

Proof: If G is a cycle, then the theorem follows. So, suppose G is not a cycle.
Let n be the number of end-vertices of the forest H= G — v. Then, degGw degGi> > n.

We now show that degff_> n. Since H is acyclic, we have that degHw < n. So,
suppose degHW < n. Then the edge vw must be in E(G) and we have that n > 1 +
degHw degGw degGv > n. Thus, w is an end-vertex of H. Hence, degHw 1 which
implies that zl(G) degGw degGw 2. As such, G must be a cycle and this is a
contradiction. Thus, degHw n.

Since degHw «, H is a tree. Also, degGw n implies all vertices of H different
from w have degree at most two in H. As such, every path joining two distinct end-
vertices of H must contain u. Furthermore, degGw degGz/ implies that v is adjacent
to only end-vertices of H and possibly w. Consequently, every vertex of G different
from v and w has degree d(G) 2 and w lies on every cycle of G.

As an immediate consequence of the preceding two results, we have the following.










