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Vertex Cyclic Graphs

§ 1. Definitions

In the following, we consider graphs which are finite, undirected, loop-free, and
without multiple edges.

Let u and v be vertices of a graph G.A«-» walk in G is an alterating sequence
of vertices and edges beginning with u, ending with v, and such that each edge is
incident with the vertices immediately preceeding and succeeding it. A u — v walk
is open if u 4= v and closed if u v. A trail is a walk without repeated edges and a

path is a trail without repeated vertices. A circuit is a closed trail and a cycle is a

circuit in which the intermediate vertices are not repeated.
A graph is connected if there is a walk joining every pair of vertices. A component

of a graph G is a connected subgraph not properly contained in any other connected
subgraph of G. A vertex v of a graph G is a cut-vertex of G if G — v has more
components than does G. A graph G is a block if it is connected and has no cut-vertex.
A block of a graph G is a subgraph of G which is maximal with respect to being a
block.

Let V(G) and E(G) denote respectively the vertex and edge sets of a graph G.

For vertices u and v of G, let the distance da{u, v) between u and v be the length of a
shortest u — v path. The eccentricity e(v) for ve V(G) is e(v) max{ig(#, v) : ue V(G)}
and the radius rad G of G is rad G min {e(v) : v e V(G)}. The center Z(G) of G is

Z(G) {ve V{G) : e{v) rad G}.
In general, we will follow the Conventions of Behzad and Chartrand [2].

§ 2. Randomly Eulerian graphs

Although we will consider 'randomly eulerian' graphs only to the extent that
they exist in a larger class of graphs, they are introduced here for perspective and
to illustrate the property we will investigate.

Let G be a connected graph. An eulerian trail in G is an open trail of G containing
all edges of G and an eulerian circuit of G is a circuit of G which contains all edges
of G. The graph G is eulerian if it has an eulerian circuit. Also, G is randomly eulerian
from a vertex v if each trail with initial vertex v can be extended to an eulerian v — v
circuit of G.

Euler [3] characterized eulerian graphs and Ore [4] characterized graphs which
are randomly eulerian from a vertex. In particular, if the degree degav of v e V(G) is
the number of edges in G incident with the vertex v, then we have the following
well-known propositions.

Proposition 1. A connected graph is eulerian if and only if each vertex has even
degree.

Proposition 2. A connected graph has an eulerian trail if and only if it has

exactly two vertices of odd degree.

Proposition 3. An eulerian graph is randomly eulerian from a vertex v if and
only if v belongs to every cycle of G.
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It is a property inherent in the third proposition in which we are most interested
and will pursue in the next section.

§ 3. Vertex cyclic graphs

A connected graph G with only cyclic blocks is vertex cyclic if it has a vertex
which belongs to every cycle of G. In particular, a vertex cyclic graph G is v-cyclic
if v is a vertex belonging to each cycle of G. To see that non-eulerian vertex cyclic
graphs exist, it suffices to consider the complete bipartite graph K{2, 3).

Noting that a (p, ?)-graph is a graph with p vertices and q edges, we have the
following result.

Theorem 1. If G is a v-cyclic (p, ^)-graph, then q < 2p — 3.

Proof: The graph G - v is a forest with p-1 vertices and at most p - 2 edges.
Since v can be adjacent to at most p-\ vertices, G can have at most 2p - 3 edges.

For a graph G, let A (G) and d{G) respectively denote the maximum and minimum
degree among the vertices of G. Another consequence following from the proof of
Theorem 1 is presented below.

Corollary 2. If G is vertex cyclic, then ö(G) 2.
In [1], Babler showed for a graph G randomly eulerian from a vertex v that

degGy A(G). We now generalize this result by showing this is a property of vertex
cyclic graphs.

Theorem 3. If G is a y-cyclic graph, then degGw A(G).

Proof: Since H G — v is a forest, we have that A (H) does not exceed the number
n of end-vertices of H. In G, the vertex v is adjacent to each end-vertex of H, thus,
A(H) <n < degGv. Furthermore, for u e V(H), degGw degHu if uv $ E(G) and degGw

1 + degi/w if uv e E(G). In any event, degGw < degGz; for all u e V(H) since the
only edges in G which are not in H, are those edges joining v to some vertex in H.

We may now obtain the following result.

Theorem 4. If G is a ü-cyclic graph and degG„> A{G) for some w _ V(G) - {v},
then G is also w-cyclic and degGu d(G) for all u e V(G) - {v, w}.

Proof: If G is a cycle, then the theorem follows. So, suppose G is not a cycle.
Let n be the number of end-vertices of the forest H= G — v. Then, degGw degGi> > n.

We now show that degff_> n. Since H is acyclic, we have that degHw < n. So,
suppose degHW < n. Then the edge vw must be in E(G) and we have that n > 1 +
degHw degGw degGv > n. Thus, w is an end-vertex of H. Hence, degHw 1 which
implies that zl(G) degGw degGw 2. As such, G must be a cycle and this is a
contradiction. Thus, degHw n.

Since degHw «, H is a tree. Also, degGw n implies all vertices of H different
from w have degree at most two in H. As such, every path joining two distinct end-
vertices of H must contain u. Furthermore, degGw degGz/ implies that v is adjacent
to only end-vertices of H and possibly w. Consequently, every vertex of G different
from v and w has degree d(G) 2 and w lies on every cycle of G.

As an immediate consequence of the preceding two results, we have the following.
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Corollary 5. A graph is vertex cyclic from at least three vertices if and only if it
is a cycle.

A property which is inherent in the eulerian Situation, but not for vertex cyclic
graphs in general, is presented below.

Lemma 6. If G is randomly eulerian from a vertex v and T is any trail with
initial vertex v, then G — E(T) has at most one nontrivial component.

Proof: If T is a circuit, then each nontrivial component of G — E(T) is eulerian
and, as such, contains a cycle which in turn contams v. Hence, G — E(T) has at most
one nontrivial component and it contains v. If T is not a circuit, then we can extend
T by a path P to yield a circuit T'. Let Hv be the component of G — E(T') containing
v. Then, any other component of G — E(T') is trivial. Also, G — E(T) is G — E(T')
together with the path P. Hence, given any component of G — E(T) not containing
v, it must be trivial. Thus, the lemma follows.

A vertex cyclic graph G A circuit T of G

Figure 1

To see that the result in Lemma 6 does not generalize to all vertex cyclic graphs,
it suffices to consider the vertex cyclic graph G and the circuit T of G in Figure 1.

Then, G — E(T) has two nontrivial components, neither of which contain v. However,

there do exist noneulerian vertex cyclic graphs with this property. In fact,
the following theorem characterizes all such vertex cyclic graphs.

Theorem 7. Let G be a ^-cyclic graph. Then, G — E(T) has at most one nontrivial
component for each trail T with intial vertex v if and only if:

a) G is vertex cyclic from exactly two vertices; or

b) G is eulerian.

Proof: The sufficiency of a) or b) follows from Theorem 4 and Lemma 6 respectively.

To show the necessity of a) or b), we show that if G is noneulerian and vertex
cyclic from only v, then G has a trail T with initial vertex v such that G — E(T) has

at least two nontrivial components. We now consider the following two cases.

Case 1. Suppose G has a block B with at least two vertices different from v and both

of odd degree. Then, there exist vertices u and w in B of odd degree together with a

u — w path P containing neither v nor any other odd vertex.
For each edge ein G- E(P) incident with a vertex x in P, there is an x — v

path Pe in G — E{P). Also, for each pair of edges ev and e2 in G — E(P) incident with
a vertex x in P, the paths Pei and PCt have only x and v in common. Since each

vertex x of P has even degree in G — E(P), we may pair them to form cycles, the
union of which is a v — v circuit C. which exhausts the edges in G — E(P) incident
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with x. Also, if Pti and Ptt correspond to edges ex and e2 incident with distinct vertices
% and „2 respectively, then Pei and PCt have only v in common. Consequently, the
v — v circuits CXi and C. have only v in common if x1 4= x2. Thus, the union T of all
the circuits Cx, x e V(P), is a — circuit in G - _T(P) exhausting all the edges in
G — E(P) incident with vertices of P.

Let C be a cycle in T containing w. Then C has an edge xv incident with v but
not with w. Then T — xv has a. v — x trail T' exhausting the edges in G — E(P)
incident with vertices of P. Thus, the paths P and x, v must be in different
components of G — E(T').

Case 2. Suppose G has a block B with exactly one vertex w different from v and of
odd degree. Necessarily, the vertex v must also be of odd degree in B.

Suppose G is not a block. Let u be a vertex of B different from v and adjacent
to w. Then, B — uw is connected and has u and v as its only vertices of odd degree.
By Proposition 2, B — uw has an eulerian u — v trail T. Let _?' be any block of G

different from B. Then the path u, w and the block B' lie in different components of
G - E(T).

Conversely, suppose G B. Since G is not w-cyclic, there is a cycle C in G not
containing w. Since w can be adjacent to atmost one vertex of C — v, there is a vertex
x in G — F(C) adjacent to _>. Note that G — E{C) has only one nontrivial component
H and H — xw has only two vertices of odd degree; in particular, x and v are of odd
degree. By Proposition 2, H — xw has an eulerian v — x trail T. Since T exhausts the
edges in G — xw incident with x and w, the path x, y and the cycle C lie in different
components of G — j_(T).

We now consider the center of a vertex cyclic graph and show that it must
contain any vertex for which the graph is vertex cyclic.

Theorem 8. If G is a ^-cyclic graph, then v e Z(G).

Proof: Let u e V(G) be such that dG(u, v) eG(v) and suppose u is in block B of G.

If B 4= G, then for each w e F(G) — F(ß) we have that eG(w) > dG(w, u) dG(w, v) +
dG(v, u) > dG(v, u) e(v) since v can be the only cut-vertex of G. In any event,
Z(G) c V[B) since .(z) < e(v) for all 2 e Z(G).

Since w and v are in a block, there exists a cycle containing u and v. Let C be a
smallest such cycle. Given any two vertices of C and a diagonal path joining them,
the path must contain v. Since C is a smallest cycle, we have rad C eG(v). Thus,
ec(x) rad C for each x e V(C). Since there are no shorter paths in G joining any two
vertices of C, we also have eG(x) > eG(x) for all x e V(C).

Figure 2



J. Roberts: Vertex Cyclic Graphs 9

If B C, we are done. So, suppose B 4= C. Let _> e V(B — C). Then there is

exactly one path P not containing v but joining w to C. Suppose P joins C at the
vertex x. Let __ G — £(C) and let Wj be the vertex on P — x dosest to x which mini-
mizes dp(w, wx) + djj{ Let Px be the wx — x subpath of P and let P2 be a
shortest wx — v path in H. Clearly, Px and P2 have only wx in common. Let P3 be a
shortest # — v subpath of C containing u. Then P1( P2 and P3 form a cycle Ca (cf.
Figure 2) and rad Cx > rad C. As such, there is a vertex s e F(P3) such that dGx{wx, s)

> rad C. By our choice of wx, there is no shorter s — wx path in G and we have that
e(w) > d(w, s) > d(wx, s) > rad C > e(v). Hence, it follows that v e Z(G).

Given a set V of vertices of a graph G, the induced subgraph <F> of G has vertex
set V and edge set E {uv e E(G) : u, v e V}. It is well known that the center need
not induce a connected subgraph. This is also the case for eulerian graphs. In particular,

the graph in Figure 3 is eulerian, has center {«, v), and <{«, v}} is not connected.
However, this is not the case for vertex cyclic graphs.

Figure 3

Theorem 9. If G is a vertex cyclic graph, then Z(G) is connected.

Proof: Suppose G is ?7-cyclic. If Z(G) {v} or dG(v, z) < 1 for all z e Z(G), then
the result follows. So, suppose there is a z e Z(G) such that dG(v, z) > 2 and let P be

any shortest v — z path. It suffices to show V(P) £ Z(G). To show this, it suffices
to prove that the vertex u adjacent in P to z is also in Z(G). Let Px be the v — u
subpath of P. This is shown in Figure 4, the remainder of which we will construct in
the following.

Figure 4

Suppose u ^ Z{G). Since z e Z(G) and uz e E(G), we have that e(u) e(z) + 1. Let
w e V(G) be such that d(u, w) e(u). Then, v 4= w 4= z and d(w, z) e(z).

Let P2 be a shortest z — w path. Since G is zi-cyclic, 11 is the only vertex which
Px and P2 can have in common. In this case, the z — v subpath P2' of P2 is of the
same length as P. Hence, Px together with the v — w subpath of P2 is a « — w walk
of length e(z). Since this is impossible, the paths Px and P2 are disjoint.

Since degGw > 2, there is a vertex x adjacent to w but not on P2. Then, dG(x, z) <
e(z). Let P3 be a shortest x — z path. Clearly, _> ^ V(P3) and w must be on P3. Let
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P8' and P3" respectively denote the x — v and v — z subpaths of P3. Then, P3" has the
same length as P. Hence, the paths Px, P3', and ({w, x}} constitute a. u — w walk of
at most e(z). Since this is impossible, it must be the case that u e Z(G). As such, the
theorem follows.

As a special case of the preceding theorem, we have the following corollary.
Corollary 10. If a graph G is randomly eulerian from any vertex, then the center

Z(G) induces a connected subgraph.

John Roberts, Western Michigan Univ., Kalamazoo, USA
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Kleine Mitteilungen

When is the divisibility relation in a monoid a partial ordering

1. Let (M, ¦ e} be a monoid, i.e., a semigroup <M, •> with an identity element
e. We define the divisibility relation < in M by

x, y e M; x < y : <-> xu y for some u e M
By a non-trivial group we mean a group consisting of two or more elements.

For x e M, we denote the principal right ideal {xu; u e M}by xM. It is easily seen
that, for arbitrary x, y eM,

x < y <-> yM c xM <-> ye xM (1)

and that < is reflexive and transitive. Shwu-Yeng T. Lin [5] raised the problem
to find a necessary and sufficient condition on M for < to be a partial ordering. In
this note we present an answer to this question and several remarks about it.

2. Criterion 1: For a monoid <M, • e>, the following Statements are equivalent:

(*) x, u, v e M; xuv x -> xu x

(*') x, y e M; xM yM -> x y

(*") the divisibility relation < in M is a partial ordering

Proof: (*) -> (*'): Assume that xM yM. Then x xe e xM yM and, anal-
ogously, y e xM. Therefore there exist u, v e M such that y xu, x yv, hence
xuv x, and (*) implies xu x, i.e., x y. - (*') -> (*"): Suppose that x < y and
y < x. From (1) we conclude xM yM, and by virtue of (*') we get x y. - (*") ->
(*): Let be xuv x. Then xu < x and x < xu, and antisymmetry yields xu x.
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