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Since a; + a5 + a3 = 7, we have
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where we have made another use of the arithmetic-geometric mean inequality.
It is now obvious from this last inequality that
S5\ 3
sina, sine sinag < o oy 0ty (3—2‘/~3—) ; (7)
7

which, together with (5), gives

(‘s‘.%) =3 (i/a:la:oz; 32Vn§ )2' @

This readily yields (3).

It is easy to see [from (5) and (8)] that if equality holds in (3) then (7) is an
equilateral triangle. Conversely, if (T) is equilateral, then equality holds in (3). We
finally remark that in addition to being a refinement of (2), the inequality in (3) is a
statement about the product of the angles of (T); there do not seem to be many
statements of this type in the elementary geometry literature.

Faruk Abi-Khuzam, Syracuse University
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Elementarmathematik und Didaktik
Gliicksspiel und Markovketten
Zum 350. Geburtstag von Blaise Pascal (1623-1662)

1. Einleitung und Problemstellung

Bereits im 15. und 16. Jahrhundert beschéiftigten sich italienische Mathematiker
wie Paccioli, Tartaglia und Cardano mit der Analyse von Gliicksspielen. Erwdhnens-
wert ist der Franziskanerménch und Mathematikprofessor Fra Luca Paccioli, der
vermutlich als erster im Jahre 1494 das Problem aufwarf, welches uns in der Folge
beschiftigen wird; eine einwandfreie Losung erfuhr es allerdings erst rund 150 Jahre
spdter [1]. -

Im 17. Jahrhundert vergniigten sich viele franzdsische Aristokraten in den
feinen Salons mit allerlei Gliicksspielen. Chevalier de Méré, ein Freund Pascals, fand
seine praktischen Erfahrungen im Abschliessen von Wetten im Widerspruch zu
gewissen theoretischen Uberlegungen. Diese basierten im herkdmmlichen «Propor-
tionaldenken», das sich dann auch als fragwiirdig herausstellte. Blaise Pascal und
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Pierre Fermat (1601-1665) wurden durch die Anregungen von de Méré in einen
spannenden Dialog verwickelt, der in Form eines Briefwechsels der Nachwelt teil-
weise erhalten blieb.

Der 29. Juli 1654 kann als «Geburtsstunde» der modernen Wahrscheinlichkeits-
rechnung bezeichnet werden [2]. Allgemein bekannt diirfte das sogenannte «probléme
des dés» sein. Es geht hier um die Frage, ob die folgenden Ereignisse gleich wahr-
scheinlich sind:

Mit einem (symmetrischen) Wiirfel in 4 Wiirfen mindestens eine Sechs bzw.
in 24 Doppelwiirfen mindestens eine Doppelsechs zu realisieren.

Weniger bekannt, doch fiir die weitere Entwicklung der Wahrscheinlichkeits-
rechnung von grosserer Tragweite ist die Frage nach der gerechten Aufteilung des
gesamten Einsatzes ber vorzeitigem Abbruch eines Gliickspiels. Dieses sogenannte
«probléme des parties» soll vorerst am historischen Beispiel vorgestellt werden.

Zwei Spieler A und B leisten je einen Einsatz von S = 32 Fr. und vereinbaren
folgendes Glicksspiel: Fillt eine symmetrische Miinze auf Kopf (K), erhdlt 4 einen
Punkt zugesprochen, andernfalls der Spieler B. Wer zum erstenmal 7 Punkte ver-
zeichnen kann, hat gewonnen und erhilt den gesamten Einsatz von 25 = 64 Fr. Aus
irgendeinem Grunde muss das Spiel in dem Augenblick unterbrochen werden, wo
A iiber 5 und B iiber 4 Punkte verfiigt.

In welchem Verhiltnis ist nun der Gesamieinsatz gerechterweise unter die beiden
Spieler zu verteilen ?

Naheliegend, doch kaum zu begriinden, sind die beiden Vorschldge «im Verhalt-
nis der erreichten Punkte», d.h. 5:4, oder «im umgekehrten Verhiltnis der noch be-
notigten Punkte», also 3:2. So argumentierte unter anderem Paccioli.

Im nachfolgenden Abschnitt werden die Lésungsansitze von Fermat und Pascal
an obigem Beispiel erértert und dann verallgemeinert. Was die Losung von Fermat
betrifft, sei auch auf das fundamentale Werk «Ars conjectandi» von Jakob Bernoulli
verwiesen ([3], S. 1061f.).

2. Klassische Losungsansitze von Fermat und Pascal
2.1 Kombinatorische Losung nach Fermat

Wir beziehen uns auf das historische Beispiel im vorhergehenden Abschnitt.
Nach Spielabbruch benétigt A noch 2 und B noch 3 Punkte bis zum Sieg. Wir denken
uns jetzt das Spiel in seinen moglichen Verldufen fiktiv fortgesetzt.

Wenn A kiinftighin einen Punkt und B deren zwei zugesprochen erhilt (gleich-
giiltig in welcher Reihenfolge), stehen beide unentschieden, da sie je noch einen
Punkt bis zum Sieg benétigen. Mit anderen Worten: Nach spitestens 4 Wiirfen (oder
Partien) steht endgiiltig fest, welcher Spieler den Gesamteinsatz errungen hat.

Die 24 = 16 kiinftigen, gleichwahrscheinlichen Spielverldufe kénnen wie folgt
dargestellt werden (der Buchstabe gibt an, welcher Spieler den Punkt bekommt):

* AAAA * ABAA * BAAA * BBAA
* AAAB * ABAB * BAAB BBAB
* AABA * ABBA * BABA BBBA .
* AABB ABBB BABB BBBB

Fig. 1
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Die mit * versehenen Kombinationen fithren zu einem Gewinn von A, da sie
den Buchstaben A mindestens zweimal enthalten. Thre Anzahl ist

(2) + )+ (5) -

In 11 von 16 gleichwahrscheinlichen Fillen kann A gewinnen. Somit folgt fiir
die Gewinnwahrscheinlichkeit 4 des Spielers 4:

u_ o))+ ()

P4 =716~ 24
Der totale Einsatz von 64 Fr. ist also im Verhiltnis
11 5
Pa:pp=124:(1—24) = 16 16
aufzuteilen.

Wesentlich an dieser Herleitung ist einerseits die prospektive Betrachtungsweise
und anderseits die Idee, den gesamten Einsatz im Verhiltnis von Wahrscheinlich-
keiten aufzuteilen.

Seien allgemein m und # die bis zum Gewinn fehlenden Punkte des Spielers A
bzw. B. Dann ist nach spétestens

m-1)4+nm—-1D+1=m+n—1
Partien die endgiiltige Entscheidung gefallen. Unter den 2m+7-1 gleichwahrschein-
lichen kiinftigen Spielabldufen

ABA...B...AB

(m + n — 1)-mal
fithren jene fiir A zum Sieg, die mindestens m-mal 4 enthalten. Somit folgt fiir die
Gewinnwahrscheinlichkeit p 4 des Spielers A

it Sk (m+n——1)

- 1
PA*""" =
2m+n-—1

und der gesamte Einsatz wird im Verhdltnis p4: (1 — p4) aufgeteilt.

Bemerkenswert ist also die Tatsache, dass das Aufteilungsverhiltnis im soge-
nannten Pascalschen Dreteck (triangle arithmétique) abgelesen werden kann. In der
Zeile Nummer m + # — 1 (immer von O an gezidhlt) werden alle Binomialkoeffizienten
aufaddiert, was den Nenner von p4 ergibt. Der Zihler ist die Summe der letzten »
Kombinationszahlen.

Fiir das bereits erwdhnte Beispiel m = 2, n = 3 ist somit m + # — 1 = 4 die Num-
mer der relevanten Zeile.
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2.2 Losungsansatz von Pascal

Aus dem unter 1. genannten Briefwechsel geht hervor, dass Pascal von der
Grundidee des erwarteten Erloses ausging. Dieser ist verantwortlich fiir die Aufteilung
des gesamten Spieleinsatzes. Fiir beide Spieler kann das kdinftige Geschehen durch
einen sogenannten Spielbaum veranschaulicht werden. Er stellt einen einfachen,
stochastischen Prozess dar (oder eine Lotterie), der mit gewissen Wahrscheinlich-
keiten zu einer Auszahlung von 64 Fr. an 4 bzw. B fiihrt.

Mit (z,7) sei der Zustand bezeichnet, in dem der Spieler 4 noch ¢ und Spieler B
noch j Punkte benétigt, bis er den totalen Einsatz 2 S erhélt. Im Zustand (0,7) erhilt
A den Betrag 2S5 und B nichts, im Zustand (7,0) hingegen erhidlt B den Betrag 25
und A4 nichts.

Diese zweite Betrachtungsweise hat den unbestreitbaren Vorteil, dass der pro-
spektive Losungsansatz einerseits in seinen moglichen Veridstelungen durchschaubar
wird (Fig. 2) und anderseits die natiirliche Verbindung zum modernen Ansatz der
stochastischen Prozesse ermdglicht (Abschnitt 3).

Der nachfolgende Baum zeigt alle moglichen kiinftigen Spielabldufe und zwar
vom Spieler A aus gesehen.

K(A erhilt einen Punkt und ¢ wird somit um 1 erniedrigt.

Z "B erhilt einen Punkt und § wird somit um 1 erniedrigt.

0,3) [64 0,2) [64] 0,1) [64
///( >///( )[64] - (0.1)[64]
K (1,3) (1,2) (1.1) (1,0)[ 0
12 (0,2 [64 (0.1) [64]
@3 < - — =
1/2 w2 (1,1) (1,0)[ 0]
N - —
22 @y (0,1) [64
~ 7
@) \/ N (1,0 [0]
- B Rl
> 2oo]
Fig. 2

Wir berechnen nun den erwarteten Erlos E 4(2,3) fiir A aufgrund obiger Figur.
Nach den Regeln der elementaren Wahrscheinlichkeitsrechnung folgt:

w3+ (G + G (3 () () o
L)) G (] o e
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Analog erhilt man fiir Spieler B den erwarteten Erlés Ep(2,3) = 20. Der totale
Einsatz ist somit im Verhdltnis E4: Ep =44 :20 = 11: 5 unter die Spieler 4 und B
aufzuteilen.

Allgemein kann man zeigen, dass die Losungsansidtze nach 2.1 und 2.2 zum
gleichen Resultat fithren. Im iibrigen halten wir fest, dass der erwartete Erlos E,, ,
fiir dem Spieler A der folgenden Differenzengleichung geniigt:

1 : ;
221 E, .= 5 (En~-1,n + E, ,~1] mit den Randbedingungen

E,, =2Sund E,, ,= 0 fiir alle positiven m,n .

Bemerkung: E, , konnte auch sferativ und ohne Kenntnis einer Formel ermittelt
werden, indem man zuerst nach Figur 2 den Spielbaum konstruiert. Jetzt wird von
riickwérts her E,;; nach 2.21 sukzessive berechnet («Rollback-Analyse»), bis das
Verfahren bei E,, , seinen Abschluss findet.

3. Losung mit Hilfe von Markovketten

Spiel als spezieller stochastischer Prozess (Markovkette)

Figur 2 stellt das kiinftige Geschehen nach vorzeitigem Abbruch des Spieles als
stochastischen Prozess dar, der verschiedene sogenannte Zustinde annehmen kann
(siehe auch [4], S. 115f.).

Zum Zeitpunkt ¢ = 0 bendtigen die beiden Spieler noch # bzw. n Punkte bis zu
ithrem Gewinn. Somit ist (m,n) der Anfangszustand eines stochastischen Prozesses,
der verschiedene Zustinde (¢,7) durchlaufen kann und spatestenszur Zeit T=m+n—1
zu einem Gewinn fiir 4 oder B fiihrt.

Die Menge Z der méglichen Zustdnde ist wie folgt definiert:

Def. 3.1
Z={(@j)furi=0,...,mundj=0,...,n}—{0,0)}
wobei {(0,7) /1 =1, ..., n} = G4 bzw.

{2,0)/i=1,...,m}= Gpg

die Gewinnzustinde von A bzw. B darstellen.
Fiir unser Beispiel geht aus Figur 2 hervor:

Z ={(23), (22), (21), (13), (12), (11), G4, Gz}.

Allgemein gibt es ¢ = m - n + 2 verschiedene Zustédnde.

Befindet sich der Spielprozess zu irgendeiner Zeit ¢ im Zustand (¢,7), so geht er
im nichsten Zeitpunkt mit Wahrscheinlichkeit 1/2 in den Zustand (z — 1,7) bzw.
(¢, — 1) liber, je nachdem ob 4 bzw. B einen Gewinnpunkt zugesprochen erhilt. Er-
reicht der Prozess den Zustand G4 bzw. Gg, so bleibt er dort mit Wahrscheinlichkeit 1.

Bezeichnen wir mit $y, ; ¢, die sogenannte Ubergangswahrscheinlichkeit, die an-
gibt, mit welcher Wahrscheinlichkeit sich der Prozess zur Zeit ¢ + 1 im Zustand (%,7)
befindet, wenn er sich zur Zeit ¢ im Zustand (7,7) befand. Nach den vereinbarten
Spielregeln folgt:
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Def. 3.2
] firk=171—-1 dl=1
g MrEmrm L andE=g i=1,...
1 . i=1,.
— firk=1 und =7 —1 ’
P(i,j) (1:.1)=J 2 !

1fire=k2=0 oderfir 7=71=0

| 0 sonst

147

In Figur 2 ist zu beachten, dass die Auszahlung von 2S5 = 64 Fr. dem Zustand G4

und die Auszahlung 0 dem Zustand Gp in unserer neuen Symbolik entspricht.

Der nachfolgende sogenannte Transitionsgraph ([5], S. 41) gibt eine anschauliche
Darstellung des Ablaufs unseres stochastischen Prozesses gemaéss Def. 3.2.

G2
0,5 » < 0,5
(1,3) ———> (1,2) > (1,1)
0,5 0,5 . Ojs
To,s Io,s To,s O
> G )
o
(2,3) > (2,2) > (2,1) 0,5
Fig. 3
2, 2y 23 24 2 2g Zq 2g
(2,3) (2,2) (2,1) (1,3) (1,2) (1,1) G4 Gg
5 (23) 0 1/2 0 1/2 0 0 0 0
7 (2,2) 0 0 1/2 0 1/2 0 0 0
23 (2,1) 0 0 0 0 0 1/2 0 1/2
2z, (1,3) 0 0 0 0 1/2 0 1/2 0
75 (1,2) 0 0 0 0 0 1/2 1/2 0
7 (1,1) 0 0 0 0 0 0 1/2 1/2
2, Ga 0 0 0 0 0 0 1 0
23 Gg 0 0 0 0 0 0 0 1
Fig. 4

Matrix der Ubergangswahrscheinlichkeiten pg, ) &,y fir m = 2, n = 3,
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In Figur 4 haben wir eine sogenannte stochastische Matrix, d.h. eine quadratische
Matrix der Ordnung g mit lauter nicht negativen Zahlen und der Zeilensumme 1.
Bezeichnen wir die méglichen Zustinde mit 2; (1 =1, .. ., g) und mit ps;5, = p,, die
Ubergangswahrscheinlichkeiten, dann gilt:

[
D bu=1 fiir i=12,...,p,
k=1

denn der Prozess geht mit Sicherheit von einem Zustand z; in irgendeinen Zustand
2, € Z iber.

Def. 3.3

Mit w;(f) = w,(f) bezeichnen wir die Wahrscheinlichkeit, dass sich der Prozess
zur Zeit £ im Zustand z; (1 = 1, ..., p) befindet.

Wir suchen nun eine rekursive Beziehung fiir die sogenannten Zustandswahr-
scheinlichkeiten w,(t). Der Prozess befindet sich zur Zeit (£ + 1) im Zustand z;, wenn
er sich unmittelbar vorher in irgendeinem Zustand z, (¢ = 1, ..., p) befindet und
dann im nichsten Moment in 2, ibergeht. Somit folgt:

Satz 3.1

fa1 _" y i=1,...,0

w; (¢ + 1) "‘k‘;:wk()'pki’ t=0,..., T

An dieser Stelle sei vermerkt, dass unser spezieller stochastischer Prozess in die
Kategorie der sogenannten homogenen Markovketten mit endlich vielen Zustinden
gehort (vgl. [5], S. 19).

Satz 3.1 gestattet uns bei Kenntnis der Anfangs-Zustandswahrscheinlichkeiten
w;(0) (# = 1,..., g) alle folgenden rekursiv zu ermitteln. Dazu ist die Vektor- und
Matrixschreibweise geeignet.

w(t) = [wyld), ..., wt),..., » o ()] Zeilenvektor der Zustandswahrschein-
lichkeiten zur Zeit ¢

ﬁllo--oPli-;ocpIP

stochastische Matrix der Ubergangswahrschein-

Upp = lichkeiten

PP :
Po - Bpi-ePop
w(0) = (1,0,0,...,0), denn zur Zeit ¢ = 0 befindet sich der Prozess mit Sicherheit
im Zustand (m,n).

Nun gilt nach der Definition der Matrizenmultiplikation

wit+1) =w(t)-U; ¢t=0,1,..., T

w(l) = w(0) - U
w(2) = w(l) - U =w(0) - U2
Allgemein gilt:

Satz32 | w(T) = w(0) - UT mit w(0) = (1,0,0,...,0), , T=m+n—1

Spitestens nach T = m + n — 1 Partien, d. h. zur Zeit T befindet sich der Prozess
entweder im Zustand G4 (Gewinn fiir 4) oder im Zustand Gg (Gewinn fiir B).
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Bezugnehmend auf den Loésungsansatz von Fermat in 2.1 kénnen wir die Ge-
winnwahrscheinlichkeiten $4 und pp als Zustandswahrscheinlichkeiten w,(7) und
wg(7T) interpretieren.

Der Zustandsvektor w(T) hat also die Form

w(T)=1[0,0,...,0,w,(T), wy(T)],

und der gesamte Einsatz von 25 = 64 Fr. ist im Verhiltnis w,(T) : wg(T) unter die
Spieler 4 und B zu verteilen.

Die Berechnung mit dem Computer (basierend auf einem einfachen BASIC-
Programm?) hat fiir unser Beispiel ergeben:

w(4) = (0, 0, 0, 0, 0, 0, 0.6875, 0.3125) .
Somit
w,(4) : wg(4) =11:5,

was mit den Resultaten von Fermat und Pascal iibereinstimmt.

4. Zusammenfassung

Vor fast 500 Jahren wurde ein unscheinbares Problem aus der Welt der Gliicks-
spiele aufgeworfen, das probléme des parties. Anfianglich erfuhr es eine falsche Be-
handlung, denn die damalige Betrachtungsweise war noch stark im «Proportional-
denken» verhaftet. Erst in der Mitte des 17. Jahrhunderts war die Zeit reif! Die
beiden kongenialen Mathematiker Fermat und Pascal fanden unabhingig vonein-
ander richtige Losungen. Die Freude war gross, so dass Pascal schreiben konnte:
«Je vois bien que la vérité est la méme a Toulouse et 4 Paris» ([2], S. 77). Gleichzeitig
wurden auch die Fundamente der Wahrscheinlichkeitsrechnung gelegt, der spéter
eine so glanzvolle Entwicklung beschieden sein sollte.

Wesentlich an den beiden Losungsansitzen ist die prospektive Behandlung und
die Ausrichtung auf Wahrscheinlichkeiten eines kiinftigen Gewinnes. Wahrend Fermat
den kombinatorischen Charakter hervorhob («Triangle arithmétique»), arbeitete
Pascal, vermutlich als erster, mit dem Begriff des Frwartungswertes eines Zufallvor-
ganges oder Lotterie. Die dritte, moderne Art der Losung besteht in der Interpreta-
tion des kiinftigen Spielgeschehens als spezieller sfochastischer Prozess, genannt
Markovkette. Dieser Ansatz ldsst sich leicht auf 3 oder mehr Spieler verallgemeinern
und auch die numerischen Berechnungen bieten fiir nicht allzu grosse m und » keine
wesentlichen Probleme. H. Loeffe], St. Gallen
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1) BASIC ist eine einfache, problemorientierte Programmiersprache, die sich besonders zur
Lésung von mathematisch-statistischen Aufgaben eignet.
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