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Since qlx + <x2 + a3 n, we have
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where we have made another use of the arithmetic-geometric mean inequality.

It is now obvious from this last inequality that
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which, together with (5), gives
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This readily yields (3).

It is easy to see [from (5) and (8)] that if equality holds in (3) then (T) is an
equilateral triangle. Conversely, if (T) is equilateral, then equality holds in (3). We
finally remark that in addition to being a refinement of (2), the inequality in (3) is a
statement about the product of the angles of (T); there do not seem to be many
Statements of this type in the elementary geometry literature.

Faruk Abi-Khuzam, Syracuse University
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Elementarmathematik und Didaktik
Glücksspiel und Markovketten

Zum 350. Geburtstag von Blaise Pascal (1623-1662)

1. Einleitung und Problemstellung
Bereits im 15. und 16. Jahrhundert beschäftigten sich italienische Mathematiker

wie Paccioli, Tartaglia und Cardano mit der Analyse von Glücksspielen. Erwähnenswert

ist der Franziskanermönch und Mathematikprofessor Fra Luca Paccioli, der
vermutlich als erster im Jahre 1494 das Problem aufwarf, welches uns in der Folge
beschäftigen wird; eine einwandfreie Lösung erfuhr es allerdings erst rund 150 Jahre
später [1].

Im 17. Jahrhundert vergnügten sich viele französische Aristokraten in den
feinen Salons mit allerlei Glücksspielen. Chevalier de M6t6, ein Freund Pascals, fand
seine praktischen Erfahrungen im Abschliessen von Wetten im Widerspruch zu
gewissen theoretischen Überlegungen. Diese basierten im herkömmlichen
«Proportionaldenken», das sich dann auch als fragwürdig herausstellte. Blaise Pascal und
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Pierre Fermat (1601-1665) wurden durch die Anregungen von de M6t6 in einen
spannenden Dialog verwickelt, der in Form eines Briefwechsels der Nachwelt
teilweise erhalten blieb.

Der 29. Juli 1654 kann als «Geburtsstunde» der modernen Wahrscheinlichkeitsrechnung

bezeichnet werden [2]. Allgemein bekannt dürfte das sogenannte «probteme
des des» sein. Es geht hier um die Frage, ob die folgenden Ereignisse gleich
wahrscheinlich sind:

Mit einem (symmetrischen) Würfel in 4 Würfen mindestens eine Sechs bzw.
in 24 Doppelwürfen mindestens eine Doppelsechs zu realisieren.

Weniger bekannt, doch für die weitere Entwicklung der Wahrscheinlichkeitsrechnung

von grösserer Tragweite ist die Frage nach der gerechten Aufteilung des

gesamten Einsatzes bei vorzeitigem Abbruch eines Glückspiels. Dieses sogenannte
«probleme des parties» soll vorerst am historischen Beispiel vorgestellt werden.

Zwei Spieler A und JE? leisten je einen Einsatz von 5 32 Fr. und vereinbaren
folgendes Glücksspiel: Fällt eine symmetrische Münze auf Kopf (K), erhält A einen
Punkt zugesprochen, andernfalls der Spieler B. Wer zum erstenmal 7 Punkte
verzeichnen kann, hat gewonnen und erhält den gesamten Einsatz von 2 S 64 Fr. Aus
irgendeinem Grunde muss das Spiel in dem Augenblick unterbrochen werden, wo
A über 5 und B über 4 Punkte verfügt.

In welchem Verhältnis ist nun der Gesamteinsatz gerechterweise unter die beiden

Spieler zu verteilen

Naheliegend, doch kaum zu begründen, sind die beiden Vorschläge «im Verhältnis

der erreichten Punkte», d.h. 5:4, oder «im umgekehrten Verhältnis der noch
benötigten Punkte», also 3:2. So argumentierte unter anderem Paccioli.

Im nachfolgenden Abschnitt werden die Lösungsansätze von Fermat und Pascal
an obigem Beispiel erörtert und dann verallgemeinert. Was die Lösung von Fermat
betrifft, sei auch auf das fundamentale Werk «Ars conjectandi» von Jakob Bernoulli
verwiesen ([3], S. 106ff.).

2. Klassische Lösungsansätze von Fermat und Pascal
2.1 Kombinatorische Lösung nach Fermat

Wir beziehen uns auf das historische Beispiel im vorhergehenden Abschnitt.
Nach Spielabbruch benötigt A noch 2 und B noch 3 Punkte bis zum Sieg. Wir denken
uns jetzt das Spiel in seinen möglichen Verläufen fiktiv fortgesetzt.

Wenn A künftighin einen Punkt und B deren zwei zugesprochen erhält (gleichgültig

in welcher Reihenfolge), stehen beide unentschieden, da sie je noch einen
Punkt bis zum Sieg benötigen. Mit anderen Worten: Nach spätestens 4 Würfen (oder
Partien) steht endgültig fest, welcher Spieler den Gesamteinsatz errungen hat.

Die 24 16 künftigen, gleichwahrscheinlichen Spielverläufe können wie folgt
dargestellt werden (der Buchstabe gibt an, welcher Spieler den Punkt bekommt):

# AAAA * ABAA * BAAA * BBAA
* AAAB * ABAB * BAAB BBAB
* AABA * ABBA * BABA BBBA
* AABB ABBB

Fig.

BABB
l

BBBB
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Die mit * versehenen Kombinationen führen zu einem Gewinn von A, da sie
den Buchstaben A mindestens zweimal enthalten. Ihre Anzahl ist

G) + GK)-u
In 11 von 16 gleichwahrscheinlichen Fällen kann A gewinnen. Somit folgt für

die Gewinnwahrscheinlichkeit pA des Spielers A:

FA 16 2*

Der totale Einsatz von 64 Fr. ist also im Verhältnis
11 5

Pa:Pb Pa: (1-Pa)= jjt : -^
aufzuteilen.

Wesentlich an dieser Herleitung ist einerseits die prospektive Betrachtungsweise
und anderseits die Idee, den gesamten Einsatz im Verhältnis von Wahrscheinlichkeiten

aufzuteilen.
Seien allgemein m und n die bis zum Gewinn fehlenden Punkte des Spielers A

bzw. B. Dann ist nach spätestens

(m-l) + (tt-l) + l w + tt-l
Partien die endgültige Entscheidung gefallen. Unter den 2m+B~1 gleichwahrscheinlichen

künftigen Spielabläufen

ABA B AB

(m+ n— l)-mai
führen jene für A zum Sieg, die mindestens w-mal A enthalten. Somit folgt für die
Gewinnwahrscheinlichkeit pA des Spielers A

m + n - 1+ »-1 /m + n-l\

und der gesamte Einsatz wird im Verhältnis pAi (1 — Pa) aufgeteilt.
Bemerkenswert ist also die Tatsache, dass das Aufteüungsverhältnis im

sogenannten Pascalschen Dreieck (triangle arithmetique) abgelesen werden kann. In der
Zeile Nummer m + n — 1 (immer von 0 an gezählt) werden alle Bmomialkoeffizienten
aufaddiert, was den Nenner von pA ergibt. Der Zähler ist die Summe der letzten n
Kombinationszahlen.

Für das bereits erwähnte Beispiel m 2, n 3 ist somit m + n— 1=4 die Nummer

der relevanten Zeile.

1

1 1

12 1

13 3 1

_
6 + 4 + 1 jlpA 2* 16
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2.2 Lösungsansatz von Pascal
Aus dem unter 1. genannten Briefwechsel geht hervor, dass Pascal von der

Grundidee des erwarteten Erlöses ausging. Dieser ist verantwortlich für die Aufteilung
des gesamten Spieleinsatzes. Für beide Spieler kann das künftige Geschehen durch
einen sogenannten Spielbaum veranschaulicht werden. Er stellt einen einfachen,
stochastischen Prozess dar (oder eine Lotterie), der mit gewissen Wahrscheinlichkeiten

zu einer Auszahlung von 64 Fr. an A bzw. B führt.
Mit (*,/) sei der Zustand bezeichnet, in dem der Spieler A noch i und Spieler B

noch / Punkte benötigt, bis er den totalen Einsatz 2 S erhält. Im Zustand (0,;) erhält
A den Betrag 2 S und B nichts, im Zustand (i, 0) hingegen erhält B den Betrag 2 S

und A nichts.
Diese zweite Betrachtungsweise hat den unbestreitbaren Vorteil, dass der

prospektive Lösungsansatz einerseits in seinen möglichen Verästelungen durchschaubar
wird (Fig. 2) und anderseits die natürliche Verbindung zum modernen Ansatz der
stochastischen Prozesse ermöglicht (Abschnitt 3).

Der nachfolgende Baum zeigt alle möglichen künftigen Spielabläufe und zwar
vom Spieler A aus gesehen.

K sA erhält einen Punkt und i wird somit um 1 erniedrigt.

Z ^2? erhält einen Punkt und / wird somit um 1 erniedrigt.

/ (0,3) 0,2) 0,1) 6464 64// (1,0) fö]1,3 (1.2) 1.1
K

1/2 (0,2) (0,1) 6464
(2,3)

(1,0) 01.2) (1,1)12

0,1) 642,2 1,1)

\ 2,1) (1,0) 0

(2,0) [O]
Fig. 2

Wir berechnen nun den erwarteten Erlös £^(2,3) für A aufgrund obiger Figur.
Nach den Regeln der elementaren Wahrscheinlichkeitsrechnung folgt:

^-[(ir+(i)'+(i)'+(ir+(4r+(.)']-
?[(-)•?(-)'?(*)'?£).¦-£¦-«¦
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Analog erhält man für Spieler JE? den erwarteten Erlös Eb(2,3) 20. Der totale
Einsatz ist somit im Verhältnis Ea : Eb 44: 20 11: 5 unter die Spieler A und B
aufzuteilen.

Allgemein kann man zeigen, dass die Lösungsansätze nach 2.1 und 2.2 zum
gleichen Resultat führen. Im übrigen halten wir fest, dass der erwartete Erlös Emn
für den Spieler A der folgenden Differenzengleichung genügt:

2.2.1

1

2

E0tU 2S und Emt0 0 für alle positiven m,n

Em,n~^ • [Em-i,n + Em,n-ii mit den Randbedingungen

Bemerkung: Em$n könnte auch iterativ und ohne Kenntnis einer Formel ermittelt
werden, indem man zuerst nach Figur 2 den Spielbaum konstruiert. Jetzt wird von
rückwärts her Ei$j nach 2.21 sukzessive berechnet («Rollback-Analyse»), bis das

Verfahren bei Em _ seinen Abschluss findet.^m, n '

3. Lösung mit Hilfe von Markovketten

Spiel als spezieller stochastischer Prozess (Markovkette)

Figur 2 stellt das künftige Geschehen nach vorzeitigem Abbruch des Spieles als
stochastischen Prozess dar, der verschiedene sogenannte Zustände annehmen kann
(siehe auch [4], S. 115f.).

Zum Zeitpunkt t 0 benötigen die beiden Spieler noch m bzw. n Punkte bis zu
ihrem Gewinn. Somit ist (m,n) der Anfangszustand eines stochastischen Prozesses,
der verschiedene Zustände (i, j) durchlaufen kann und spätestens zur Zeit T m+n — 1

zu einem Gewinn für A oder B führt.
Die Menge Z der möglichen Zustände ist wie folgt definiert:

Def. 3.1

Z {(i,j) für i 0, m und ; 0, n} - {(0,0)},

wobei {(0,/)// 1,. n} Ga bzw.

{(i,0)fi-l,...,m}~GB
die Gewinnzustände von A bzw. B darstellen.

Für unser Beispiel geht aus Figur 2 hervor:

Z {(23), (22), (21), (13), (12), (11), GA, GB}.

Allgemein gibt es o m • n + 2 verschiedene Zustände.
Befindet sich der Spielprozess zu irgendeiner Zeit t im Zustand (i,j), so geht er

im nächsten Zeitpunkt mit Wahrscheinlichkeit 1/2 in den Zustand (i — l,j) bzw.
(*,/ — 1) über, je nachdem ob A bzw. B einen Gewinnpunkt zugesprochen erhält.
Erreicht der Prozess den Zustand Ga bzw. G&, so bleibt er dort mit Wahrscheinlichkeit 1.

Bezeichnen wir mit p(ij){^ö die sogenannte Übergangswahrscheinlichkeit, die
angibt, mit welcher Wahrscheinlichkeit sich der Prozess zur Zeit t + 1 im Zustand (k,l)
befindet, wenn er sich zur Zeit t im Zustand (i,j) befand. Nach den vereinbarten
Spielregeln folgt:
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Def. 3.2

Paj) ik,i)=

für k i' — 1 und / /

für k i und l j — 1

*=1,.
7 1,.

w

1 für i & 0 oder für / / 0

0 sonst

In Figur 2 ist zu beachten, dass die Auszahlung von 2 S — 64 Fr. dem Zustand G^
und die Auszahlung 0 dem Zustand Gb in unserer neuen Symbolik entspricht.

Der nachfolgende sogenannte Transitionsgraph ([5], S. 41) gibt eine anschauliche
Darstellung des Ablaufs unseres stochastischen Prozesses gemäss Def. 3.2.

Q
0,5 0,5

0,5

(1,3) > (1,2)
0,5 0,5

0,5

(2,3)
0,5

0,5

~> (2,2)
0,5

(1,1)

0,5

-> (2,1)

Fig 3

0,5

0,5

* GJl

h h h h h H *7 *8

(2,3) (2,2) (2,1) (1,3) (1,2) (1,1) GA GB

h (2,3) 0 1/2 0 1/2 0 0 0 0

H (2,2) 0 0 1/2 0 1/2 0 0 0

H (2,1) 0 0 0 0 0 1/2 0 1/2

H (1,3) 0 0 0 0 1/2 0 1/2 0

H (1,2) 0 0 0 0 0 1/2 1/2 0

*6 (1,1) 0 0 0 0 0 0 1/2 1/2

h GÄ 0 0 0 0 0 0 1 0

*8 Gb 0 0 0 0 0 0 0 1

Fig. 4
Matrix der ÜbergangswahrscheinHchkeiten pa,j) (*,i> für m » 2, n =» 3.
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In Figur 4 haben wir eine sogenannte stochastische Matrix, d. h. eine quadratische
Matrix der Ordnung q mit lauter nicht negativen Zahlen und der Zeilensumme 1.

Bezeichnen wir die möglichen Zustände mit zt (i 1, q) und mit pzt*k — ptk die
Übergangswahrscheinlichkeiten, dann gilt:

Q

£ptk~l für i=l,2,...,o,
denn der Prozess geht mit Sicherheit von einem Zustand zt in irgendeinen Zustand
zh e Z über.

Def. 3.3

Mit Wzt(t) wt(t) bezeichnen wir die Wahrscheinlichkeit, dass sich der Prozess

zur Zeit t im Zustand zt (i 1,..., o) befindet.
Wir suchen nun eine rekursive Beziehung für die sogenannten Zustandswahr-

scheinlichkeiten wt(t). Der Prozess befindet sich zur Zeit (t + 1) im Zustand zt, wenn
er sich unmittelbar vorher in irgendeinem Zustand zh (k 1, o) befindet und
dann im nächsten Moment in zt übergeht. Somit folgt:
Satz 3.1

w,(t+i) - j>tW-fc,; !__n"""r
An dieser Stelle sei vermerkt, dass unser spezieller stochastischer Prozess in die

Kategorie der sogenannten homogenen Markovketten mit endlich vielen Zuständen
gehört (vgl. [5], S. 19).

Satz 3.1 gestattet uns bei Kenntnis der Anfangs-Zustandswahrschemlichkeiten
wt(0) (i 1,. q) alle folgenden rekursiv zu ermitteln. Dazu ist die Vektor- und
Matrixschreibweise geeignet.

w(t) [wx(t), wt(t),. wp (t)] Zeüenvektor der Zustandswahrschein-
lichkeiten zur Zeit t

Upp-
Pn Pu jip stochastische Matrix der Übergangswahrschein¬

lichkeiten
_PPi PPt PPP_

w(Q) (1, 0, 0,. 0), denn zur Zeit t 0 befindet sich der Prozess mit Sicherheit
im Zustand (m,n).

Nun gilt nach der Definition der Matrizenmultiplikation

w(t + 1) w(t) U; t~0,l,...,T
w(l) w(0) • U

w(2) « w(l) • U w(0) U2

Allgemein gilt:

Satz 3.2 w(T) 10(0) • UT mit ^(0) (1,0, 0,..., 0), T * m + n - 1

Spätestens nach T m + n — 1 Partien, d. h. zur Zeit T befindet sich der Prozess
entweder im Zustand Ga (Gewinn für A) oder im Zustand Gb (Gewinn für B).
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Bezugnehmend auf den Lösungsansatz von Fermat in 2.1 können wir die
Gewinnwahrscheinlichkeiten pA und pB als Zustandswahrscheinlichkeiten w7(T) und
wB(T) interpretieren.

Der Zustandsvektor w(T) hat also die Form

5(r) [o,o,...,o>w7(r),w8(r)],
und der gesamte Einsatz von 2S 64 Fr. ist im Verhältnis w7(T) : wB(T) unter die
Spieler A und B zu verteilen.

Die Berechnung mit dem Computer (basierend auf einem einfachen BASIC-
Programm1) hat für unser Beispiel ergeben:

w(4) (0, 0, 0, 0, 0, 0, 0.6875, 0.3125)

Somit

w,(4): wB(4) 11: 5

was mit den Resultaten von Fermat und Pascal übereinstimmt.

4. Zusammenfassung
Vor fast 500 Jahren wurde ein unscheinbares Problem aus der Welt der Glücksspiele

aufgeworfen, das probUme des parties. Anfänglich erfuhr es eine falsche
Behandlung, denn die damalige Betrachtungsweise war noch stark im «Proportionaldenken»

verhaftet. Erst in der Mitte des 17. Jahrhunderts war die Zeit reif! Die
beiden kongenialen Mathematiker Fermat und Pascal fanden unabhängig voneinander

richtige Lösungen. Die Freude war gross, so dass Pascal schreiben konnte:
«Je vois bien que la v6rit6 est la meme ä Toulouse et k Paris» ([2], S. 77). Gleichzeitig
wurden auch die Fundamente der Wahrscheinhchkeitsrechnung gelegt, der später
eine so glanzvolle Entwicklung beschieden sein sollte.

Wesentlich an den beiden Lösungsansätzen ist die prospektive Behandlung und
die Ausrichtung auf Wahrscheinlichkeiten eines künftigen Gewinnes. Während Fermat
den kombinatorischen Charakter hervorhob («Triangle arithmetique»), arbeitete
Pascal, vermutlich als erster, mit dem Begriff des Erwartungswertes eines Zufallvorganges

oder Lotterie. Die dritte, moderne Art der Lösung besteht in der Interpretation
des künftigen Spielgeschehens als spezieller stochastischer Prozess, genannt

Markovkette. Dieser Ansatz lässt sich leicht auf 3 oder mehr Spieler verallgemeinern
und auch die numerischen Berechnungen bieten für nicht allzu grosse m und n keine
wesentlichen Probleme. H. Loeffel, St. Gallen
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1) BASIC ist eine einfache, problemorientierte Programmiersprache, die sich besonders zur
Lösung von mathematisch-statistischen Aufgaben eignet.
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