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Kleine Mitteilungen
Über die Summierung von Kosekantenreihen mit Hilfe des Residuensatzes

Herrn Professor Dr. Hans-Joachim Kanold zum 60. Geburtstag

G. H. Hardy und J. E. Littlewood zeigten in [1] und [2], dass Reihen der Form
Z (— l)nj(ns sina nn) (a algebraisch, s a + it) für hinreichend grossen Realteil von s

absolut konvergieren und sich in Beziehung zur Doppel-Zeta-Funktion f2 setzen
lassen. In dieser Note soll für natürliche ungerade s 2m+l(m^l) und für
quadratische Irrationalitäten a eine Summierung solcher Reihen in endlicher Form
gegeben werden.

Es seien a eine positive algebraische und m eine natürliche Zahl. Für jede natürliche

Zahl v seien Qv das in der komplexen Zahlenebene gelegene Quadrat mit den
Ecken (v + 1/2) (± 1 ± i) und Nv die grosste natürliche Zahl kleiner als ol(v + 1/2).
Dann hat die Funktion

/w - - ,m^L sinnz - sma7Z2

in Qv folgende Singularitäten:
a) einen Pol der Ordnung 2w + 3in2 0,
b) einfache Pole in den Punkten z +: n (n 1, 2, v)

c) einfache Pole in den Punkten z ± »/oc (n 1,2, Nv)
Bezeichnet Z' eine Summe, in der der Index 0 auszulassen ist, so gilt nach dem

Residuensatz

±-r /*/(.)& res /+ 2,'res/+ £• res/.2r — ¦ ~ --¦¦ " ---¦ «
dQv

Auf den horizontalen Seiten von Qv gilt
| sin n z | ^ | sinh n (v + 1/2) | ^ sinh n und | sin a n z | ^ sinh a n

also gilt dort

i/i ö(tM
Auf den vertikalen Quadratseiten gilt
| sinn z | cosh (n • Im z) ^ 1.

Schwieriger wird die Abschätzung von | sin a n z | nach unten. Dazu setzen wir

A y mit |*„|£1«(, + ±)
(d.h. kv ist die zu ol(v + 1/2) nächstgelegene natürliche Zahl) und erhalten

K)VK)KH
.("-4H-
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Wird ab jetzt <x als quadratische Irrationalität vorausgesetzt, die der Gleichung
ol — 1/a g (g ganze Zahl) genügt, d.h.

j/g2 + 4 + g
ÖC= ;

so lässt sich | <5„/2 | nichttrivial nach unten abschätzen, da dann der Betrag des Zählers

nicht kleiner als 1/4 werden kann. Somit ist

A_

v

mit einer nur von a abhängigen Konstanten A.
Mit 12 x\n | _=_- I sin x \ für | % | <£ n/2 folgt für hinreichend grosses v auf den vertikalen

Seiten von Qv

Insgesamt gilt also

dQv

und folglich für v ~> oo nach (1)

j> res/+ £' res /=- res/. (2)

Mit
(- l)tt (~ 1)B «52 m

"* / ___¦ + _ ¦: • .«*,_ f

(3)

M2»+isj-a7rw *_»/a n?m+1 sinnnja.
folgt

fizi>_/_L_ + _J____\. _!«.,.
—j n2m+1 \ sinan:» shinn/cx./ 2 *-o

Zur Berechnung von

1 rf2**2 / nz2 \
*-o' (2w + 2)! ^2w+2 \ sinn*-sinan*)/ !*~o

verwendet man zweckmässig die Potenzreihenentwicklung von nxjsin nx und erhält
nach leichter Rechnung (B2ft sind die Bernoulli-Zahlen)

Ä(m,a): -ires/ (4)

(- l)*,?r2,*+1 ^t,1 (22" - 2) (2»*+2-*'1 - 2) a2/1
~ äx ~0 (2/i)!(2m+2-.2/i)l ^ B*"+*-*"-

Mit (3) und (4) ist die geschlossene Summierbarkeit gewisser Kosekantenreihen
gezeigt.
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Speziellfolgtfürg 0(2), alsoa=^ja+ 1 + 7 (j ganz), wegen sinnn\a. sinann
(— 1)"J sin (n n ]/j2 + 1) die Summenformel

(_!)•<» +1) J?(w,ft» + l + j)
Zf-, n2m +1 sm (ti m ]/f + 1) 1 + (/j2 + 1 + ;)«-

(5)

Für ; 2q (q #= 0) bzw. 7 2q + 1 ergeben sich Summationsformeln mit bzw.
ohne alternierendes Vorzeichen. G. Bach, Braunschweig
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Proof of Yff's Conjeeture on the Brocard Angle of a Triangle

Let olx, a2, oe3 be the three angles of a tnangle (T), and let co be the Brocard angle
of (T). One formula for co is

csc2co csc2a1 + csc2a2 + csc2a3 (1)

and the inequality

co < — (2)

is well known.
Yff [1] p. 500 conjectured that co satisfies the inequality

8 coz < clx a2 a3 (3)

We here give a proof of (3).
The function (sin#)/# decreases steadily in the interval 0 < x < n/2; this together

with (2) implies that

sinco 3
> —. (4)

co n

Combinmg (4) and (1) and applying the familiär inequality between the arith-
metic and geometrie mean, we obtain

j 1 > esc2 co > 3 I ^/csca1csca2csca3 (5)

and it remains to find a sharp upper bound for the product sin^ sinota sinot3. To do
this consider the representation formula

sin x x TI \ 1 - (—^1 - xP(x) (6)...['-(s)l-rfw
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Since qlx + <x2 + a3 n, we have

P(o_) P(«2) Pfe) -7 _7 [l - (-*-)*]

-_ Afi-(-i)1n-ii-iL \n»/J

+m'-m-
where we have made another use of the arithmetic-geometric mean inequality.

It is now obvious from this last inequality that

/3l/3\3
smaj sma2 sina3 < <xx a2 a3 I ¦—¦— I (7)

which, together with (5), gives

/ n \2
>

/ 1 J^_\2
\3a>/ ~ If/^oc^' 3V3/ '

This readily yields (3).

It is easy to see [from (5) and (8)] that if equality holds in (3) then (T) is an
equilateral triangle. Conversely, if (T) is equilateral, then equality holds in (3). We
finally remark that in addition to being a refinement of (2), the inequality in (3) is a
statement about the product of the angles of (T); there do not seem to be many
Statements of this type in the elementary geometry literature.

Faruk Abi-Khuzam, Syracuse University
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Elementarmathematik und Didaktik
Glücksspiel und Markovketten

Zum 350. Geburtstag von Blaise Pascal (1623-1662)

1. Einleitung und Problemstellung
Bereits im 15. und 16. Jahrhundert beschäftigten sich italienische Mathematiker

wie Paccioli, Tartaglia und Cardano mit der Analyse von Glücksspielen. Erwähnenswert

ist der Franziskanermönch und Mathematikprofessor Fra Luca Paccioli, der
vermutlich als erster im Jahre 1494 das Problem aufwarf, welches uns in der Folge
beschäftigen wird; eine einwandfreie Lösung erfuhr es allerdings erst rund 150 Jahre
später [1].

Im 17. Jahrhundert vergnügten sich viele französische Aristokraten in den
feinen Salons mit allerlei Glücksspielen. Chevalier de M6t6, ein Freund Pascals, fand
seine praktischen Erfahrungen im Abschliessen von Wetten im Widerspruch zu
gewissen theoretischen Überlegungen. Diese basierten im herkömmlichen
«Proportionaldenken», das sich dann auch als fragwürdig herausstellte. Blaise Pascal und
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