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stehende Polytop ist wiederum ein regulidres 16-Zell mit der Kantenlinge /2, also
den beiden anderen kongruent.

Beide Beispiele stehen nach H. Groemer [3] in engem Zusammenhang damit,
dass es Parkettierungen des E, mit lauter reguldren 24-Zellen (alle in gleicher Dreh-
lage) bzw. mit lauter reguldren 16-Zellen (in drei verschiedenen Drehlagen) gibt
(vgl. H. S. M. Coxeter [1], S. 296). Da solche Parkettierungen mit reguliren 120-
Zellen nicht existieren, ist es vermutlich schwierig, die Zerlegungsgleichheit des
120-Zells mit einem Hyperwiirfel explizit zu realisieren.

P. Miirner, Gymnasium Interlaken
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A Triangle Transformation

1. The configuration of a triangle on the sides of which polygons of a certain
kind are described is a much studied theme in elementary geometry. The following
variant does not seem to be well-known.

On the sides of a given triangle A B C similar isosceles triangles BCA4, CAB, ABC,
are constructed (Fig. 1), with bases BC, C4, AB, all outward or all inward, the base
angle ¢ being taken positive or negative respectively (— n/2 < ¢ < /2). The opera-
tion thus defined which transforms the triangle 4 = ABC into 4, = A,B,C, will be
denoted by T'(g).
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The sides of 4, 4, are a, b, ¢ and a,, b,, c;, the oriented areas F and F;, S
=at4+ 02+ S;=a+ b2+ 2 As 4, B=A,C = (1/2) a cos~? ¢ etc., the cosine
rule gives

4a% = cos~2@{b®+c®— 2bc cos (a + 2 @)}
= cos~2 @ {b? + c® — (b® + ¢® — a?) (1 — 2sin%gp) + 2b ¢ sina sin2¢}
=20+ 2c*—a%) 2 +a%+ 8F¢, (1.1)

with ¢ = tang. For 42 and 4¢% we obtain analogous formulas. Hence

Sl=j‘1r—(3t3+1)5+6tF. (1.2)
For the area of 4, we have
Fy= F + ) '(area BA,C) — > (area B,AC,) . (1.3)
Obviously
area B4,C = %—ta2 , (1.4)
and
1

area B,AC; = — cos™2¢-bc sin (« + 2¢)

= 00| = o

cos~2p {2 F (cos?p — sin¢p) + (b + ¢® — a?) sing cosp}

(1——t2)F+—é- £ (6% + c? — at) . (L.5)

I

Hence from 1.4 and 1.5
1 1
area BA,C — area B;AC, = Y (2—-1) F + a—s—t (3a% — b® — c?),
and 1.3 gives us

1 1
Fy=(38+1) F4 215 (1.6)

The formulas (1.2) and (1.6) express F, and S, as linear functions of F and S.
They have been derived recently in a different context, for ¢ > 0 only and with a
less simple proof of (1.6) by Toscano [1]. They are valid for all values of ¢; if F, and F
have different signs the orientation of 4, is the opposite of that of A.

2. F and S are related to the well-known Brocard’s angle w of the triangle [2].
We have, accepting a negative value of w for a triangle with negative orientation

cotw= S[4F * (2.1)
One always has cot? w = 3, or — /6 < w =< 7/6, with equality only for equilateral
triangles.

From (1.2) and (1.6) it follows

3#£41)cot 6¢
cotw-( + 1) cot @ +

- > 2.2
1" 2tcotw+ 382+ 1) (22)
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which means that w, depends only on ¢ and w. If two triangles are equibrocardian
their transforms by T (@) are equibrocardian as well.

The right-hand side of (2.2) is a linear function of cot w the determinant of which
is (322 — 1)2. Hence it is singular only if £ = 4 )/1/3; then for any w we have cot
w, = + /3. Therefore by T (4 n/6) any triangle is tranformed into an equilateral tyiangle,
a well-known theorem.

We divide the set of all triangles into classes K(w), the elements of a class being
the triangles with a given w. The classes K(4 7/6) contain the equilateral triangles,
K(0) is the class of degenerated triangles. The conclusion is: any T'(p) permutes the
classes K(w).

(2.2) may be written as follows

(388 + 1) (cot w, — cotw) + 2¢ cotw, cotw —6¢t=10 (2.3)
w, = w implies
t (cot?w — 3) =0 (2.4)

Hence the two classes of equilateral triangles are invariant for any T(p) and
any class K(w) is invariant for T(0). Both properties are obvious: T'(0) transforms a
triangle into that of the midpoints of its sides.

If w and w, are given, (2.3) is a quadratic equation for ¢:

3 2 (cotw, — cotw) + 2 ¢ (cotw, cotw — 3) + (cotw; — cotw) =0 (2.5)
Its discriminant d satisfies
d = (cot?w, — 3) (cot?w — 3) =0 (2.6)

Hence 2.5 has real roots ¢,, ¢,; in general, two transformations T(p,), T (@) exist
which transform a given class K(w) into a given class K(w,). One always has ¢, £, = 1/3.
If ¢, is a root of (2.5) then — ¢, is one of the equation with w and w, interchanged.
If T(¢) transforms K(w) into K(w,) the two transforming K(w,) into K(w) are T (— t) and
T (— 1/3¢). In particular: 4 and T (- #) {T'(¢) -4} are equibrocardian.
If T(tl) ‘A = Al a-nd T(ta) .Al = Az, we ha.ve
cotm. = {3+t + (B4t + 1) cos w+6(f+12) (342 +1)
20+ 1) Bhity+ 1) cos 0+ {30+ 4)P + (3 tyty + 1)}
or,if 344, +1+0,

(38,4 1) cos w + 6 ¢
2tlzcos w+(3t122+1)’

COSWg =

(2.7)

with

o h+ 1ty

B 34t +1°
giving the multiplication rule for two transformations of the set: T'(t,) - {T'(¢,) - 4} and
T(t,5) -4 are equibrocardian triangles. The multiplication is commutative. If A is a
given triangle with Brocard angle w there are two transformations T such that
w, = 0 and hence cot w; = co. From (2.5) it follows that they are T'(¢,), + = 1,2, such
that #; are the roots of

3f+2¢cotw+1=0, q (2.9)

(2.8)
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that is
1
e 3 {— cotw + (cot?w — 3)12} . (2.10)

If on the sides of a triangle we construct isosceles triangles with tan ¢ = ¢, or ¢,
the points A4,, B;, C, are collinear. As ¢, {, = 1/3, ¢, + t, = (— 2/3) cot w we have ¢, + @,
=w — nf2.

3. Properties of the transformation 7'(f) may also be found by vector algebra.
We denote the point P of the plane by the vector P from the origin O to P; the unit
vector perpendicular to the plane by e.

We obtain

24A;=(B+ C)+texX (B—C), 2B, = (C+ A)+tex (C — A),

2C;= (4 + B)+tex (4 — B) (3.1)
As 4, + B, + C, = A4 + B + C, we conclude: the triangles A and T -A have the same
centroid

Furthermore if 4, = T(t;)-4 amd A, = T(¢,)-4, we have

or
44,=QRA+B+C)+ (ti+t)ex (C— B)+t,4,(24A—B—C), 3.2)

and analogously for 4 B, and 4 C,. If we take the origin O at the centroid G of ABC
we obtain

4Ay= (1+34t) A+ (b, +2) EX (C — B). (3.3)
Two special cases are of interest. If ¢, + ¢, = 0, — ¢, = + ¢, = £ one has
44,=(1—3) 4, 4B,=(1—-38#) B, 4C,=(1-38)C. (3.4)

Therefore: If on the sides of ABC we describe outward (inward) isosceles triangles
with base angle o and then on those of A,B,C, inward (outward) isosceles triangles with the
same angle @ then A3B,Cy and AB C are homothetic with respect to the centroid G, with the
scale factor (1/4) (1 — 3 tan? ¢). The two triangles are congruent if tan ¢ = + /5/3.

If 14 3¢4¢,=0,¢ + t, = ¢ we obtain

44,=12x (C— B), 4By=téx (4 —C), 4Cy=téx (B—A4). (3.5)

Hence the medians of 4,B,C, are perpendicular to the sides of ABC and equal
to (3/8) ta, (3/8) tb, (3/8) tc; from this is follows that the sides of 4,B,C, are propor-
tional to the medians of A BC with ratio /2. O. Bottema, Delft

~
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