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Zwei Beispiele zur Zerlegungsgleichheit
4dimensionaler Polytope

Wir betrachten eigentliche Polyeder des 4dimensionalen eukhdischen Raumes

E*1). P bezeichne die Menge aller eigentlichen Polyeder im E*. Zwei Polyeder A,BeP
nennen wir zerlegungsgleich (geschrieben A ~ B), wenn sie elementargeometrisch in
gleich viele Teilpolyeder AX,A2,.. An bzw. Bx, B2,. ,Bn zerlegt werden können,
so dass A{ mit B{ kongruent ist (für i 1, 2, n). Sind alle diese Kongruenzen
sogar durch Translationen realisierbar, d.h. jedes A{ mit B{ translationsgleich, so
heissen A und B translativ zerlegungsgleich (A « B).

Seit der Untersuchung von Zerlegungsrelationen dienten immer wieder reguläre
Polytope als Musterbeispiele für Zerlegungsgleichheiten und Zerlegungsungleichheiten.

M.Dehn [2] illustrierte z.B. seine notwendigen Bedingungen für Zerlegungsgleichheit

im Ez mit dem Nachweis, dass ein reguläres Tetraeder vom Inhalt 1 weder
mit dem Einheitswürfel noch mit zwei regulären Tetraedern vom Inhalt 1/2

zerlegungsgleich sein kann. Die Frage, ob und wie zwei verschiedene reguläre Polytope
des E3 überhaupt zerlegungsgleich sein können, und gewisse Erweiterungen dieses

Problemkreises untersuchte insbesondere H. Lebesgue [8, 9].
Durch die Arbeiten [4] und [5] von H. Hadwiger, [6] von B. Jessen und [7] von

B. Jessen und A. Thorup sind (nach der Klärung der entsprechenden Fragen im
Dreidimensionalen) die Probleme der gewöhnlichen sowie der translativen Zerlegungsgleichheit

von Polyedern des E4 neuerdings vollständig geklärt worden; man kennt
Systeme von notwendigen und hinreichenden Bedingungen, welche bei vorgegebenen
Polyedern rechnerisch überprüfbar sind.

Die erwähnten Ergebnisse gestatten, die Zerlegungsverhältnisse auch bei den

regulären Polytopen des E* rechnerisch vollständig abzuklären. Für eine ausführliche
Beschreibung der sechs 4-dimensionalen regulären Polytope Z5(l) (Simplex), Z8(l)
(Masspolytop, Hyperwürfel), Zu(l) (Kreuzpolytop, Hyperoktaeder), Zu(l), ZX2Q(l)

und Zm(I) verweisen wir auf das Buch von H. S. M. Coxeter [1] (der Index bezeichnet
die Anzahl 3dimensionaler Begrenzungspolytope, / die Länge der ldimensionalen
Kanten).

Nachstehende Tabelle enthält die Zerlegungsrelationen, die sich mit Hilfe der
notwendigen und hinreichenden Bedingungen von H. Hadwiger und B. Jessen errechnen

lassen; dabei bedeutet (—) keine Zerlegungsgleichheit, (z) Zerlegungsgleichheit
und (tz) translative Zerlegungsgleichheit:

z* *8 Zu Zu ^120 Zwo

z* - - ._ - -
z* - z tz z -
zu — Z z z -
Zu - tz z z -
^tm - z z z -
Zm - — - - -

l) Ein eigentliches Polyeder sei definiert als Vereinigungsmenge von endlich vielen abgeschlossenen

nichteatarteten Simplexen. Als Polytop bezeichnen wir ein konvexes Polyeder.
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In dieser Arbeit soll nun gezeigt werden, dass sich einige dieser
Zerlegungsgleichheiten nicht nur anhand der hinreichenden Bedingungen, sondern direkt durch
geometrische Konstruktionen nachweisen lassen. Damit wird die nötige Stückzahl
abschätzbar. Wir werden für die Zerlegungsgleichheiten zwischen Zs(l), Zie(/') und
Zu(l") explizite Realisierungen angeben. Genauer weisen wir Zerlegungsgleichheiten
der Form m• Z{(1) « n• Zfl') [bzw. m• Zt(l) ~n• Zj(l')] nach, wobei n-A ein Polyeder
bezeichnet, das aus n zum Polytop A translationsgleichen Stücken besteht. Diese
Relationen sind gleichwertig mit den entsprechenden Beziehungen zwischen
inhaltsgleichen Z{(L) und Zj(L'), denn die Gestalt der notwendigen und hinreichenden
Bedingungen garantiert in den von der Tabelle erfassten Fällen, dass jede bestehende
gewöhnliche oder translative Zerlegungsgleichheit zwischen Z{(L) und Zj(U) mit der
gewöhnlichen bzw. translativen Zerlegungsgleichheit von einem Aggregat paarweise
translationsgleicher disjunkter Zt(l) mit einem inhaltsgleichen Aggregat paarweise
translationsgleicher disjunkter Zß') gleichwertig ist.

Beispiel 1: Zwei translationsgleiche 8-Zelle (Hyperwürfel) sind mit einem passend
hegenden 24-Zell gleicher Kantenlänge durch Zerstückelung in neun Teilpolytope
translativ zerlegungsgleich:

2 • Z8(l) « Z„(l)
Beispiel 2: Zwei translationsgleiche 8-Zelle (Hyperwürfel) der Kantenlänge 1

sind mit drei passend liegenden, paarweise kongruenten (aber nicht translationsgleichen)

16-Zellen (Hyperoktaeder) der Kantenlänge ]/ 2 durch Zerstückelung in achtzehn

Teilstücke translativ zerlegungsgleich:

2.Z8(l)~3.Z16(|/2)
Nachweis für Beispiel 1: Dem Beweis hegt eine Idee zugrunde, die wir anhand

einer Zerlegung des 3dimensionalen Einheitswürfels veranschaulichen wollen: wir
zerlegen den Würfel in kongruente, auf den Seitenflächen errichtete Pyramiden,
deren gemeinsame Spitze mit dem Würfelmittelpunkt zusammenfällt. Wenn wir nun
diese Pyramiden durch passende Translationen den Seitenflächen eines anderen,
translationsgleichen Würfels aufsetzen, so entsteht bekanntlich (vgl. Figur 1) ein
Rhombendodekaeder. Dies ist zwar kein vollreguläres Polytop; wie bei H. S. M.
Coxeter [1], S. 150 nachzulesen ist, führt aber die genau gleiche Konstruktion im JE4

zu einem regulären Polytop, nämlich zum Zu(l).

f +

Figur 1
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Nachweis für Beispiel 2: Auch hier wollen wir die Zerlegungsidee zunächst an
dem der Anschauung zugänglichen 3dimensionalen Fall darlegen. Wir färben die
Ecken eines Würfels mit zwei Farben (• und o) so, dass die Endpunkte jeder Kante
verschiedene Farbe aufweisen (vgl. Figur 2). Die konvexe Hülle der Ecken der einen
Farbe bildet ein Tetraeder 0X; der Rest zerfällt in vier kongruente Pyramiden St

(i 1, 2, 3, 4). Zerlegen wir zwei Würfel spiegelbildlich in der beschriebenen Weise,
so entstehen neben zwei Tetraedern acht Pyramiden, die sich nach passenden
Verschiebungen zu einem Oktaeder zusammensetzen lassen. Im Ez sind also zwei Würfel
mit der Vereinigung von zwei Tetraedern und einem Oktaeder zerlegungsgleich
vgl. Figur 2).

Figur 2

Im 4dimensionalen Fall zeigt sich, dass die durch die Zerlegung von zwei Hyper -

würfeln in der beschriebenen Weise entstehenden Polytope gerade drei kongruente
16-Zelle sind. Wir zerlegen zuerst einen 4 dimensionalen Einheitswürfel in ein Hyper-
oktaeder 0Xund acht Simplexe St, iel {1,2,...,8}. Zu diesem Zweck färben wir
die sechzehn Ecken des 8-Zells wie oben beschrieben abwechslungsweise mit zwei
Farben und fassen sie ihrer Farbe entsprechend in zwei Mengen {A,} und {Bt}, i e I,
zusammen. Die acht paaiweise nicht benachbarten Ecken At, i e I, haben als konvexe
Hülle ein reguläres 16-Zell 0X mit der Kantenlänge |/2 (vgl. H. S. M. Coxeter [1],
S. 156); acht der sechzehn begrenzenden Tetraeder liegen auf dem Rand des Hyper-
würfels, die übrigen acht im Innern. Für ein jedes dieser letztgenannten acht Tetraeder
Sl, i € I, sind die Ecken genau einer Würfelecke Bt, i e I, benachbart; die von Bt
ausgehenden ldimensionalen Würfelkanten besitzen daher als konvexe Hülle ein
(nichtreguläres) Simplex St, i e I, mit Basis St' und Spitze Bt, in der vier paarweise
orthogonale ldimensionale Kanten zusammenstossen. Auf diese Weise zerfällt der
Würfel in ein 16-Zell 0X und acht paarweise kongruente Simplexe St,ie I.

Nun zerlegen wir zwei Einheitswürfel spiegelbildlich in der beschriebenen Weise.
So entstehen zwei kongruente, aber nicht translationsgleiche 16-Zelle 0X und 02 und
sechzehn kongruente Simplexe SJt j e / {1, 2,. 16}. Wegeit der Orthogonalität
zwischen vier ldimensionalen Kanten jedes Simplexes Sp j e /, ist es mit Translationen,

bei denen die Punkte Bj je in einen vorgegebenen Punkt P des E4 übergehen,
möglich, diese sechzehn Simplexe lückenlos um den Punkt P anzuordnen; das ent-
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stehende Polytop ist wiederum ein reguläres 16-Zell mit der Kantenlänge j/2, also
den beiden anderen kongruent.

Beide Beispiele stehen nach H. Groemer [3] in engem Zusammenhang damit,
dass es Parkettierungen des EA mit lauter regulären 24-Zellen (alle in gleicher Drehlage)

bzw. mit lauter regulären 16-Zellen (in drei verschiedenen Drehlagen) gibt
(vgl. H. S. M. Coxeter [1], S. 296). Da solche Parkettierungen mit regulären 120-
Zellen nicht existieren, ist es vermutlich schwierig, die Zerlegungsgleichheit des
120-Zells mit einem Hyperwürfel explizit zu realisieren.

P. Mürner, Gymnasium Interlaken
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A Triangle Transformation

1. The configuration of a triangle on the sides of which polygons of a certain
kind are described is a much studied theme in elementary geometry. The following
variant does not seem to be well-known.

On the sides of a given triangle AB C similar isosceles triangles B CA, CAB, ABC,
axe construeted (Fig. 1), with bases BC, CA, AB, all outward or all inward, the base

angle (p being taken positive or negative respectively (— nj2 < cp < n/2). The Operation

thus defined which transforms the triangle A ABC into Ax AXBXCX will be
denoted by T(<p).

Fig.l
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