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Über Primteiler von Stirlingschen Zahlen zweiter Art
Herrn Professor Dr. H.-J. Kanold in Dankbarkeit zum 60. Geburtstag

Werden n+l Objekte auf k+1 gleichberechtigte Schubfächer so verteilt, dass
kein Fach leer bleibt, und gibt es S(n, k) verschiedene Möglichkeiten dies zu tun, so
nennt man S(n, k) Stirlingsche Zahlen zweiter Art (siehe etwa [1], [4], [5]; man
beachte die verschiedenen Arten der Zählung, die in dieser Note in Zeilen und Spalten
mit Null beginnen soll). Es gilt

S(n, k) S(n-l,k-l) + (k + 1) S(n - 1, k), (1)

und mit

S(n, 0) S(n, n) l für n ^ 0 (2)

sind alle Zahlen S(n, k) rekursiv zu bestimmen. Es widerspricht (1) und (2) nicht,
wenn gegebenenfalls zusätzlich die Werte

S(n, k) 0 für k > n, n ^ 0, und k < 0, n ^ - 1, (3)

definiert werden. Die Zahlen S(n, k) lassen sich entsprechend einem Pascalschen Dreieck

so anordnen, dass in der n-ten Zeile an /e-ter Stelle S(n, k) zu finden ist (nt k
0,1,...). Da nur die Teilbarkeit durch eine Primzahl p von Interesse sein soll, gentigt
es die Reste modulo p, wie in der Figur für p 3, aufzuschreiben.

Werden nun die Stirlingschen Zahlen zweiter Art Zeile für Zeile von links nach
rechts fortlaufend von 1 bis N numeriert, und wird dabei mit A(N) die Anzahl der
nicht durch p teilbaren Zahlen gezählt, so soll das Verhältnis A(N)/N für N -> oo
betrachtet werden. Es wird der folgende Satz gezeigt, dessen Analogon für
Bmomialkoeffizienten in [2], und mit behebigen Teilern in [3] und [6] bewiesen wurde.

Satz: fede Primzahl teilt fast alle Stirlingschen Zahlen zweiter Art»

Dabei soll «fast alle» bedeuten, dass

»m ^--0 (4)

gilt, die natürliche Dichte der N — A(N) durch p teilbaren Zahlen S(n, k) also Eins ist.
Zum Beweis wird zunächst die einfache Kongruenz

S(n, k) sS(n-p,k~p) + S(n~~p + 1, k) (mod p) (5)
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für alle ganzen k und n^p nachgewiesen. Ist n p — 1, so gilt mit (2), (3) und mit
Korollar (4.2) aus [7]

S(p -l,k)~ 0, ausser S(p - 1, 0) S(p - 1, p - 1) 1 (mod p)

Hieraus folgt mit (1)

S(p, k) 0, ausser S(p, 0) S(p, 1) S(p, p) ~ 1 (mod p)

Mit diesen Resten und mit (2), (3) prüft man die Gültigkeit von (5) für n p nach.
Aus der Annahme, dass (5) für n — p + m bereits bewiesen ist (m ^0), und mit (1)

ergibt sich

S(p + m + 1, k) S(m, k - 1 - p) + S(m + 1, k - 1) + (k + 1) {S(m, k - p)

+ S(m + 1, k)} S(m, k-p-l) + (k-p+1) S(m, k - p)

+ S(m + 1, k - 1) + (k + 1) S(m + 1, k) S(m + 1, k - p)

+ S(m + 2, k) (mod p)

und damit (5) durch vollständige Induktion über die Zeilenzahl. Wegen (3) ist (5)
auch für n p — 1 und k 0 richtig.
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Die Kongruenz (5) entspricht der Rekursion für die Bmomialkoeffizienten. Aus
(5) folgt durch vollständige Induktion über v

S(v(p — 1) + w + i, wp + j) l | S(i, j) (mod p),

v^O, Q<w <J v, für j ^i^p-2 + j und 0 <: j: ^ p - 1.

Hiernach kann das Zahlendreieck der Reste modulo p von S(n, k) in p(p — 1)

disjunkte Zahlendreiecke aufgeteilt werden, deren Zahlen die jeweils mit S(i, j)
multiplizierten Reste modulo p des Pascalschen Dreiecks sind. Die unterstrichenen Reste
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in der Figur bilden etwa em solches Teildreieck (% 1,) 0, p 3). Ist S(i,;) nicht
durch p teilbar, so smd m dem zugehörigen Teildreieck genau diejenigen Zahlen
nicht durch p teilbar, deren entsprechende Pascal-Zahlen es nicht smd

Nun gilt sicher

A(N)^p(p-l)Z(v)
für alle N mit

/v(f-l) + 2\ <N<((v + 1)^-1) + 2\i

wenn mit Z(n) die im Pascalschen Dreieck bis einschliesslich der Zeile n nicht durch
P teilbaren Bmomialkoeffizienten gezahlt werden Weiterhin ist

Z(v) ^ Z(pr - 1) fur alle v mit pr~l -l<v^pr-l
erfüllt, und m [3] und [6] wurde

Z(p--1) crr
gezeigt Mit diesen Abschatzungen ergibt sich

0<j(gO< P(t-VZ(^ Z^ Z(fir^
N - /v(p-l) + 2\ F v2 - F

p2r~2

2

"m**®'-
und der letzte Ausdruck strebt gegen Null fur beliebig grosses r Hiermit ist die

Richtigkeit von (4) und damit der Satz bewiesen
Fur Primzahlpotenzen, und daher dann auch fur beliebige Teiler, ist das

entsprechende Ergebnis zu erwarten. Man scheint jedoch nicht in gleicher Weise, wie
hier fur Primteiler, die bekannte Verteilung im Pascalschen Dreieck ausnutzen zu
können Heiko Harborth, TU Braunschweig
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