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Uber Primteiler von Stirlingschen Zahlen zweiter Art

Herrn Professor Dr. H.-J. Kanold in Dankbarkeit zum 60. Geburtstag

Werden n+1 Objekte auf 2+1 gleichberechtigte Schubfacher so verteilt, dass
kein Fach leer bleibt, und gibt es S(», k) verschiedene Moglichkeiten dies zu tun, so
nennt man S(», &) Stirlingsche Zahlen zweiter Art (siehe etwa [1], [4], [5]; man be-
achte die verschiedenen Arten der Zdhlung, die in dieser Note in Zeilen und Spalten
mit Null beginnen soll). Es gilt

Sn,k)=Sn—1,k—1)+(k+1)Sn—1,k), (1)
und mit
S(n,0)=Sn,n)=1 fir n=0 (2)

sind alle Zahlen S(n, k) rekursiv zu bestimmen. Es widerspricht (1) und (2) nicht,
wenn gegebenenfalls zusétzlich die Werte

Sn,k)=0 fir k>n, n=0, und 2<0, n=-1, (3

definiert werden. Die Zahlen S(#, ) lassen sich entsprechend einem Pascalschen Drei-
eck so anordnen, dass in der n-ten Zeile an &-ter Stelle S(n, k) zu finden ist (n, £ =
0,1, ...). Da nur die Teilbarkeit durch eine Primzahl $ von Interesse sein soll, gentigt
es die Reste modulo #, wie in der Figur fiir $ = 3, aufzuschreiben.

Werden nun die Stirlingschen Zahlen zweiter Art Zeile flir Zeile von links nach
rechts fortlaufend von 1 bis N numeriert, und wird dabei mit A(N) die Anzahl der
nicht durch p teilbaren Zahlen gezéhlt, so soll das Verhiltnis 4 (N)/N fiir N — oo be-
trachtet werden. Es wird der folgende Satz gezeigt, dessen Analogon fiir Binomial-
koeffizienten in [2], und mit beliebigen Teilern in [3] und [6] bewiesen wurde.

Satz: Jede Primzahl teilt fast alle Stirlingschen Zahlen zweiter Art.
Dabei soll «fast alle» bedeuten, dass

AN
Jim == =0 *)

gilt, die natiirliche Dichte der N — A(N) durch p teilbaren Zahlen S(x, &) also Eins ist.
Zum Beweis wird zunichst die einfache Kongruenz

St k) =Sh—p k—p)+ S —p+ 1,k (mod p) (5)
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fiir alle ganzen % und #» = p nachgewiesen. Ist n = p — 1, so gilt mit (2), (3) und mit
Korollar (4.2) aus [7]

S(p—1,k) =0, ausser S(p—1,00=Sp—-1,p—1) =1 (modp).
Hieraus folgt mit (1)
S(p, k) =0, ausser S(p,0) =SSP, 1) =S, p)=1 (mod?yp).

Mit diesen Resten und mit (2), (3) priift man die Giiltigkeit von (5) fiir » = p nach.
Aus der Annahme, dass (5) fiir » = p + m bereits bewiesen ist (m = 0), und mit (1)
ergibt sich

Sp+m+1,k)=Smk—1—p)+Sm+1,k—1)+ (k+1){Sm, k — p)
+ Sm+1,k)}=Smk—p—1)+ (E—p+ 1) Sim, k — p)
+Sm+1L,E—1)+ (k+1)Sm+1,% =Sm+1,k—p)
+ Sm + 2,k (mod p),

und damit (5) durch vollstindige Induktion iiber die Zeilenzahl. Wegen (3) ist (5)
auch fiir n = p — 1 und & = O richtig.

11000211
1701000001
1101000001
170111000011
110201000101
1012201001101
11000211010111
1010000011 10201
1101000002012201
101110 . -

Die Kongruenz (5) entspricht der Rekursion fiir die Binomialkoeffizienten. Aus
(5) folgt durch vollstindige Induktion iiber v

Sp—1) +w+i,wp + f) = (:}) S@G,7) (mod p),

120, 0wy fir j221<p—2+4+7 und 07591

Hiernach kann das Zahlendreieck der Reste modulo p von S(n, k) in p(p — 1)
disjunkte Zahlendreiecke aufgeteilt werden, deren Zahlen die jeweils mit S(z, /) mul-
tiplizierten Reste modulo $ des Pascalschen Dreiecks sind. Die unterstrichenen Reste
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in der Figur bilden etwa ein solches Teildreieck ( =1, = 0, $ = 3). Ist S(¢, 1) nicht
durch # teilbar, so sind in dem zugehorigen Teildreieck genau diejenigen Zahlen
nicht durch p teilbar, deren entsprechende Pascal-Zahlen es nicht sind.

Nun gilt sicher

A(N) = p(p — 1) Z(v)
fir alle N mit

(‘U(P—Zl)+2) <N < ((v+1) (PZ— 1)+2),

wenn mit Z(»n) die im Pascalschen Dreieck bis einschliesslich der Zeile » nicht durch
p teilbaren Binomialkoeffizienten gezdhlt werden. Weiterhin ist

Zv) = Z(pr—1) furallevmit prl—-1<v=p—1

erfiillt, und in [3] und [6] wurde

20 (*3)

gezeigt. Mit diesen Abschdtzungen ergibt sich

o AN _ p-DZ0) _, 20 _, 2@

= N _(v(7§—~1)+2) @ P

2
) = (5)
= 248 <2 |—) .,
und der letzte Ausdruck strebt gegen Null fiir beliebig grosses . Hiermit ist die
Richtigkeit von (4) und damit der Satz bewiesen.
Fiir Primzahlpotenzen, und -daher dann auch fiir beliebige Teiler, ist das ent-
sprechende Ergebnis zu erwarten. Man scheint jedoch nicht in gleicher Weise, wie

hier fiir Primteiler, die bekannte Verteilung im Pascalschen Dreieck ausnutzen zu
koénnen. Heiko Harborth, TU Braunschweig
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