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Setzen wir nun

z r) — r)o + i0, z* rj - rjo-i0
so gewinnt die Gleichung (7.4) mit o* gemäss (7.5) die Gestalt (6.1), und zwar erhält
man gerade den linearen Fall olx(z) iz, öl2(z*) iz*. Für v ergibt sich v (v + 1)

— kj4; man kann also v derart wählen, dass man eine möglichst gute Näherung
für che Poisson-Adiabate erhält. Erwin Kreyszig, University of Windsor, Ont.
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On a Cubic Functional Equation defined on Groups

I. Introduction
The following factorization yields the conditional identity az + bs + cz 3ab c ior

real numbers a, b and c with a + b + c 0.

a3 + b? + cz — 3a bc

=(a+b + c) (a2 + b2 + c2 - ab - b c - c a)

--(a+b + c) [(a - bf + (b - c)2 +(c- a)2]

(a + b + c) (a+bo> + c co2) (a + b co2 + c co) (1)

where co — (1/2) (1 — 1^3i) is a complex root of unity.
As an analogy, the following functional equation is proposed and studied

Wr1) + ny*-1) + /•(* x-1) - 3/(* y- *) f(y *-*) f(z *-*) (2)
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where / is defined on an abelian or non-abelian group G and assumes its image in a
field F. For simplicity, the notation fz(t) is used to denote [/(*)]3 f(t) • f(t). /(*).

Let 0 be a homomorphism from group G to F, with F viewed as an additive
group. Then

0(xy~1) +0(yz-*) +<P(zx~1)
[0(x) - 0(y)] + [0(y) - 0(z)] + [0(z) - 0(x)] 0

and by (1), 0 satisfies (2). Not all Solutions to (2) are group homomorphisms, since

any constant function from G to F clearly satisfies (2). Moreover, constant functions
are always continuous no matter what topologies are put on G and F. Continuity
alone, therefore, may not be sufficient for a Solution to be a homomorphism.

The question whether constant functions and group homomorphisms are the
only Solutions to (2) is answered in the negative by the first of the following two
theorems which illustrate that the Solution set of (2) depends on F as well as on G.

Before any theorem is proved, it is worthwhile to note that equation (2) on G

is equivalent to the following functional equation on G:

nxy-i) + /»(y) + /3(*-i) 3/(*y-i) f(y) f(x^) (3)

Clearly (2) reduces to (3) after substituting the group identity e for z in (2). On
the other hand, in (3) lety - YZ^and x-1 ZX-1, then xy-1 XZ^ZY-1 XY-1
and (2) is recaptured from (3).

II. Main Results
Theorem 7. Let G {e, a, b, c} be the Klein four-group with the identity e and

a2 b2 c2 e, ab ba c, bc cb a, ac ca b. Let F be a field not of
characteristic 2 or 3. Then the Solution set of (2) consists of the following functions:

(i) constant functions.
(ii) functions / such that f(e) 2 k, f(na) — k, f(nb) —k and f(nc) 2 k,

where k is an arbitrary element in F and n is a permutation on {a, b, c}.
(iii) functions / such that f(e) 2 /, f(n a) ffab) f(n c) —l where / is an

arbitrary element in F.
Proof. In (3) let x y =# e then xy e and (3) reduces to
/*>(.) +2/<<(*) 3/(.)/*(*),

from which it follows that for each x =t= e in G

0 2 f(x) - 3 f(e) /'(*) + /»(_) [2 /(*) + /(«)] Wx) - /(*)]*. (4)

Thus, /(„) (-1/2) f{e) or /(«) f(e); f{b) (-1/2) /(.) or /(&) f(e); f(c)
(-1/2) /(*)or/(c) =/(.).

In each of the cases below, functions from G to F axe defined to satisfy (4).

Case 1 / (n a) - — f(e), f(nb) f(nc) f(e)

Case 2 / (n c) f(e) 2k, keF, f(na) f(nb) —-- f(e) -&

Case 3 f(e)-2l, leF, f(a) ~ f(b) f(c) ~i /(*) -l
Case 4 /(*) - f(b) - /(c) - /(*)
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If the functions shown in Case 1 are Solutions to (2), then f(e) 0 and f(x) 0
for each x in G. This can be seen by setting x a and y b in (3) and obtaining
0 fz(a) + fz(b) + fz(c) - 3 f(a) f(b) f(c) (-1/8 + 1 + 1 + 3/2) /»(*). Notice that /(*) ee 0
is the only group homomorphism from G to F.

While constant functions defined in Case 4 are clearly Solutions to (2), some
Classification of the relation between x and y in (3) is needed in order to verify that
functions defined in Cases 2 and 3 all satisfy (3).

Case I. x y Case II. x 4= y
Subcase 1-1 x y — e Subcase II-l one of x, y is e

Subcase 1-2 x= y 4= e Subcase II-2 none of x, y is e

Under Subcase 1-1 (3) reduces to fz(e) + fz(e) + fz(e) 3 fz(e) which is clearly
satisfied by any function / from G to F.

Under Subcase 1-2, when x — y n(a) 4= c, or under Subcase II-l when x e

and y n(a), or y e and x jz(a), (3) reduces to

/3(e) + ZW*)] 4- fz[7t(a)} 3 /(*) /On*)] f[nW] (5)

In Subcase II-2, when x n(a) and y jr(6), (3) reduces to

fz(a) + fz(b) + fz(c)~3f(a)f(b)f(c). (6)

All these functions presented under Cases 2 and 3 are defined to satisfy (4) in
general, and (5) in particular. A simple computation also shows that they satisfy (6).
The proof is completed.

Theorem 2. Let G be a multiplicative group, and let F be a formally real field.
If /; G -> F is a Solution to (2) such that f(e) 0, where e is the identity in G, then
Z[f] — {x I f(x) 0} is a normal subgroup of G. Moreover, if in GjZ[f] the identity is
the only element of order 3, then / is a group homomorphism. In particular, if Z[f]

{e}, then / is injeetive; and also, if e is the only element of order 3 in G, then / is
an isomorphism.

Proof. Since f(e) 0, setting y e in (3) yields

1/W + /(ar1)] [/2W - /(*) /(*-*) 4- /»(*-*)]

- | [/(*) + ZC*"1)] {[ /W- Z«*-1)]1 + /2W + z2^-1)} •

If [/W - Z^™1)]2 -h Hx) + f^x-1) 0, then f(x) /(a;-1) 0, since F is formally
real. If f(x) 4= 0 or f(x~x) 4= 0, then by the preceding factorization, f(x) + f(x~1) 0,
which also holds for f(x) f(x-x) 0. Thus

f(x) + f(x~1)^0, xeG. (7)

From (7) it follows that x e Z[f] if and only if x-1 e Z\f\. Now suppose that
x e Z[f\ andy € Z\J\. Then, by (3), f(xy) + /¦(jr*) + /»(*-*) - 3 f(xy) fty-1) f(x~*) 0.
This implies that f*(xy) =* 0, f(xy) « 0, and #y e Z[/}. Thus Z[f] is a subgroup of G.
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For the normality of Z[f], it suffices to prove that for each x in G and for each z
in Z[f], there exists an element t in Z\f] such that xz tx. Set t xzxr1, clearly,
£# (xzx-1) x #£. To prove t e Z[f], observe that

fz(xzx^) + fz(x) + f*(z~1x~1) 3f(xzx~1) f(x) {(z^x-1) (8)

which is a direct consequence of (3). Moreover, by (3) again, Z3^-1*-1) + fz(x) + fz(z)
3 / (z-1 x-1) f(x) f(z), which reduces to f^(z~x x~x) + fz(x) 0 and ~fz (xz)+ fz(x)
0, since /(*) 0 and f (z-1 x~x) -/ (x z).

Through factorization,

/»(*) -/»(*_) [/(*) - /(„„)] [/*(*) + /(*) /(**) + /»(**)]

[/(*) - /(**)] [/¦(*) - A«) /(_-!*-») + /* (--1«-!)]

If the second factor is zero, then f(x) f(z~1x~1) f(x) — f(z-1x~1) 0, i.e.,
f(x) =_ /(z-i*-1) 0. If /(#) * Oor / (sr1 x'1) 4= 0, then the first factor must be

zero, and thus f(x) f(xz) which also holds for f(x) f (z~1x-1) 0. Now back to (8):

fz (xzx-1) -3/ (ssat1) ZW /(**) - 3 / f^^-1) Z2 W i.e.,

{(xzx-1) \j\xzx-1) + 3f2(x)] 0

This implies that either f(xzx~1) 0 or f2(xzx-x) + 3f2(x) 0. In both cases,

/ (xzx-1) 0. Thus xzx-1 e Z[f] and Z[f] is a normal subgroup.
Next, it will be shown that the cosets of G modulo Z[f] coincide with the equivalence

classes of the relation defined by x ~ y if and only if f(x) f(y). Now assume
that /(*) f(y). By (3) and (7), /»(*-iy) + /»(y-i) + fz(x) 3f(x-1y) /(jr*) f(x)

- f9(x-1y) - Z3(y) + Z3W -3Z(^"1y)Z(y) ZW- Now that f(x) /(y), therefore,
Hx^y) + 3f(x~1y)f2(x) 0 and f(x~1y)[f2(x-1y) + 3f2(x)] 0. This implies that
either f(x~1 y) 0 or f(x~1y) ZW 0. In both cases x-xye Z[f]. On the other hand,
y x (x~1y), hence jy e X and x y, where x denotes the coset of x modulo Z\f]. In
particular, if / (x) Z(y) and if Z[f] {#}, then f (x-1 y) 0, x-1y e and x y. In
this case, / is a one-to-one function.

Conversely, suppose x y i.e., y # w for some u e Z[fl. Then, by (3), Z8 (# w)

+ Hu-1) + Hx'1) 3 / (xu) ZK1) ZK1) 0. This yields 0 fz(y) - Z3W (1/2) [/(y)

- ZW] {Z2W + ZaM + [ZW + ZW]2}- Therefore, either /(*) /(y) or ZW ZÖ>) 0.

Thus £ y implies that ZW ^ /(?)•
In proving that Z is an isomorphism under the conditions that Z[f] {e} and e

is the only element of order 3 in G, rewrite (3) to obtain

0 Z3 (xy) + ny-1) + ^(x-1) ~3f(xy) f(y^) f(x^)

-\\tKxy) + f(y1) + f(x-1)]'

(U(xy) ~~ ZK1)]2 + [ZK1) - f(x~l)f + m*"1) -fl*y)V)-
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If the second factor is 0, then f(xy) f(y~1) f(x~1). Here / is proved to be

injective, therefore xy y~1 x-1. Hence x2y xx-1 e. This implies x e y,
since e is the only element of order 3 in G. If x 4= e or y 4= e, then the first factor in the
preceding factorization must be 0, which also holds when x e and y e. Thus,
f(xy) —ZK1) — Z(y_1) ZW + f(y) by (7), and / is an isomorphism from G to F.

To prove that / is a homomorphism under the assumption that e is the only
element of order 3 in GjZ[f], define a function / : GjZ[f] -> F by /(#) f(x). Since

#-iy £ z\f] if and only if f(x) /(y), f is well-defined and injective. Clearly, / factors
through GjZ[f] in the sense that f foq where q is the quotient map. When / satisfies
(3) with f(e) 0, /with f(e) 0 satisfies (3) defined on G/Z[f] i.e.,

fz (xy-1) + /3(y) + ftj-l) __= 3 / (Jy-i) f(y) /(*-l)
Since it is assumed that e is the only element of order 3 in GjZ[f], hence, by the

preceding proof, / is an isomorphism from GjZ[f] to F. This in turn implies that
/ f o q is a homomorphism from G to F. The proof is completed.

III. Remarks
Theorem 2 enables us to determine Solutions for (2) on G if / has a preassigned

set of zeros containing e. Some apphcations are in order. Let R+ be the multiplicative
group of positive reals and R be the field of real numbers. Functions f:R+ -> R
satisfying (2) with Z[f] {1} abound. Clearly, for each non-zero k, f(x) k log x is
such a one. On the other hand, let R0 denote the multiplicative group of non-zero
reals. Consider functions f:R0^>R satisfying (2) with preassigned Z[f] {—1,1}.
Then obviously Ro/Z[f] is isomorphic to i?+ and each function f: R0/Z[f] -> R satisfying

(3) is an isomorphism. If / is taken to be f(x) k logx with k 4= 0 and x > 0,
then / (f o q) : R0 -> R can simply be f(x) k log \x\, which clearly satisfies (2)
with Z[f] {—1,1}. Theorem 2 can be useful in other directions. Suppose that G is
an abehan group such that each element except the identity e has infinite order.
Let p be a prime number different from 3. Then H {xp \ x e G} is a subgroup of G

and each element in G/Hisoi order £. There is no isomorphism from GjH to a formally
real field F viewed as an additive group. Hence there does not exist any function
f:G -> F satisfying (2) with Z[f] H, otherwise, such an / induces an isomorphism/
by / / o q which yields a contradiction.

The study of (2) on groups is far from complete. Some other Observation is
noted in the following. With each element a in G, an inner automorphism is associated
such that x in G is mapped to axa~x. If f is a Solution to (2), then fa is also a Solution,
where fa is defined by fa(x) f(a xa*1), fa may not be equal to f if G is non-commutative.
The mapping (a, f) -> fa defines an Operation of G on the Solution set S of (2). For
each / in S, the set {a | a e G, fa f} is a subgroup of G and is called the isotropy
group of Z in G. The set {fa \ a e G} is called the orbit of / under G. Orbits and
isotropy groups may be useful in the study of (2).

In Theorem 2, if the set of complex numbers is taken as the field i7, then the
following factorization holds when f(e) 0.

o=nx)+nx-1) tzw+/(*-*)] tz2w - zw /k1* + z^1)]

- tZW + f(^1)] U(x) + co ttx-1)] [ZW + co2 f(x-x)]
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From this it follows that f(x) — f(x~1) or f(x) — co f(x~1) or

ZW^-^ZK1)-
It is not necessary that f(x) t— /K1) for each x in G. This shows some of the
difficulties in the problem of determining the Solution of (2) when / is complex-valued.

Ih-ching Hsu, St. Olaf College, Northfield, MN, USA
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Kleine Mitteilungen
Über die Chordalkurve zweier Kegelschnitte

Die Hüllkurve der Geraden, die aus zwei Kegelschnitten kx, k2 Sehnen gleicher
Länge ausschneiden, heisse die Chordalkurve von kx und k2.

1. Die Ghordalparabel zweier Kreise kv k2 (Mittelpunkte Kx, K2, Radien

rx, r2). Es sei Kx 4= K2. Mittelpunkt von Kx K2 sei F. Die Chordale von kx und k2 sei s.

Eine Gerade g habe von Kx bzw. K2 die Abstände px bzw. p2. Die Normale aus F
auf g schliesse mit Kx K2 den Winkel oc ein und schneide s im Punkt G. Es ist FG

(px + p2)j2. Die von g aus kx und k2 geschnittenen Sehnen sind gleich lang, wenn
r\ — p\ r\— pl ist. Daraus folgt (p2 + px) (p2 — px) — r\ — r\oder 2• FG•K1K2-cosa

rl — rf, daher ist FG-cosa konstant. Alle G liegen auf s, denn für <x 0 ist g s.

Es folgt:
Satz 1. Alle Geraden, die die (nichtkonzentrischen) Kreise kx, k2 nach längengleichen

Sehnen schneiden, umhüllen für rx 4= r2 die «Chordalparabel» p von kx und k2 (Brennpunkt

F, Scheiteltangente s). p berührt auch die gemeinsamen Tangenten von kx und k2.

Für rx r2 zerfällt p (als Klassenkurve) in das Strahlbüschel F und in das Büschel
der zu Kx K2 parallelen Geraden.

g schneidet nur dann reelle Sehnen aus kx und k2, wenn | rx — r2 | ^ 2 • FG ^rx+r2
ist; die Intervallgrenzen gehören zu den gemeinsamen Tangenten von kx und k2;

existieren 4 bzw. 2 bzw. 0 reelle gemeinsame Tangenten von kx und k2, so gibt es

2 bzw. 1 bzw. 0 Bögen auf p, deren Punkte Tangenten g mit reellen Sehnen von kx

und k2 besitzen.
Da p durch F und s bestimmt ist, gilt die Umkehrung von Satz 1:

Satz 2. Eine Parabel p ist Chordalparabel je zweier Kreise, die sich auf der Scheiteltangente

von p schneiden und deren Mitten auf der Parabelachse symmetrisch zum
Brennpunkt von p liegen.

2. Die Ghordalgeraden dreier Kreise k% (Mitten K{, Radien rt). Die Chordalparabel

von k{ und kj sei p{j (Brennpunkt F(j Mitte von K{ Kp Scheiteltangente

s{j Chordale von k{ und kj). Eine eigentliche gemeinsame Tangente von p12 und pX3

schneidet kx und k2, ebenso kx und kz, daher auch k2 und k9 nach längengleichen
Sehnen. Sie berührt also auch ^ E_ne solche Gerade, die die kt nach drei
längengleichen Sehnen schneidet, heisse eine Chordalgerade der k{.
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