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112 I.-c. Hsu: On a Cuvic Functional Equation defined on Groups

Setzen wir nun
so gewinnt die Gleichung (7.4) mit o gemdss (7.5) die Gestalt (6.1), und zwar erhilt
man gerade den linearen Fall a,(2) = 72, ay(2*) = ¢2*. Fiir v ergibt sich » (v + 1)

= — ky/4; man kann also » derart wihlen, dass man eine moglichst gute Niherung
tiir die Poisson-Adiabate erhilt. Erwin Kreyszig, University of Windsor, Ont.
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On a Cubic Functional Equation defined on Groups

I. Introduction

The following factorization yields the conditional identity a® + % + ¢3 = 3a b¢ for
real numbers ¢, band cwitha + b+ c = 0.
a®+ b+ —3abc
=(@a+b+c) (a®+b2+c2—ab—bc—ca)
1
= —2-(a+b+c) [(@a— 02+ (b —c)®+ (c — a)¥]
=(@+b+c) @+dbw+cw?) (@+ b0+ cw) (1)

where w = — (1/2) (1 — ¥ 34) is a complex root of unity.
As an analogy, the following functional equation is proposed and studied

Py + Pz + Plza) = 3f(xy ) {y =) Hz27Y): (2)

i
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where f is defined on an abelian or non-abelian group G and assumes its image in a
field F. For simplicity, the notation f3(¢) is used to denote [f(£)13 = f(¢) - £(¢) - f(2).

Let @ be a homomorphism from group G to F, with F viewed as an additive

group. Then
Dxy=) +D(yz?) + Plzx7Y)

= [@(x) — D(y)] + [P(y) — D(2)] + [P(2) —DP(x)] =0,
and by (1), @ satisfies (2). Not all solutions to (2) are group homomorphisms, since
any constant function from G to F clearly satisfies (2). Moreover, constant functions
are always continuous no matter what topologies are put on G and F. Continuity
alone, therefore, may not be sufficient for a solution to be a homomorphism.

The question whether constant functions and group homomorphisms are the
only solutions to (2) is answered in the negative by the first of the following two
theorems which illustrate that the solution set of (2) depends on F as well as on G.

Before any theorem is proved, it is worthwhile to note that equation (2) on G
is equivalent to the following functional equation on G:

Plry= ) + £ B) + Pt = 3fxy=) 1) fr™Y) - (3)

Clearly (2) reduces to (3) after substituting the group identity e for z in (2). On
theotherhand,in 3)lety=YZ-landx 1= ZX-1,thenxy !'=XZ-1ZY-1=XY"1
and (2) is recaptured from (3).

II. Main Results
Theorem 1. Let G = {e, a, b, ¢} be the Klein four-group with the identity ¢ and
B=0R=c2=¢ab=ba=c,bc=cb=a,ac=ca=0>b. Let F be a field not of
characteristic 2 or 3. Then the solution set of (2) consists of the following functions:
(i) constant functions.

(i) functions f such that f(e) = 2%, f(ma) = —&, f(md) = —k and f(nc) = 24,
where % is an arbitrary element in F and z is a permutation on {a, b, c}.
(iii) functions f such that f(¢) = 2/, f(ma) = f(w b) = f(mc) = —I where [ is an
arbitrary element in F.
Proof. In (3) let x=1y =+ e then xy = e and (3) reduces to
3(e) + 2 3(x) = 3{(e) A(x),
from which it follows that for each x + ¢in G
0 =2 3x) — 3 fle) (%) + 2e) = [2 1(x) + fle)] [H(x) — f(e))*. (4)
Thus, f(a) = (—1/2) f(e) or f(a) = f(e); f(b) = (—1/2) fe) or f(b) = [(e); f(c) =
(—1/2) He) or f(c) = f(e).

In each of the cases below, functions from G to F are defined to satisfy (4).
1
Casel flwa)=—Sfe), fad)= flme) = He)
1
Case2 f(nc)=fle) =2k keF, [f(rna)=fnd)= ) fle) = —k

Case3 fle)=21 IeF, fla)=f)=1ld) = — fi0) =~
Case 4 f(a) = f(8) = fle) = fle)
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If the functions shown in Case 1 are solutions to (2), then f(¢) = 0 and f(x) = 0
for each x in G. This can be seen by setting x = 4 and ¥ = b in (3) and obtaining
0= f3(a) + f3(b) + f3(c) — 3 f(a) 1(]) f(c) = (—1/8 4+ 1 + 1 + 3/2) f3(e). Notice that f(x) =0
is the only group homomorphism from G to F.

While constant functions defined in Case 4 are clearly solutions to (2), some
classification of the relation between x and y in (3) is needed in order to verify that
functions defined in Cases 2 and 3 all satisfy (3).

Case I. X == g Case II. X *Yy
Subcase I-1  x=y=c¢ Subcase II-1  oneof x, yise
Subcase I-2 x=y e Subcase II-2 none of x, yise.

Under Subcase I-1 (3) reduces to f3(e) + f3(e) + f°(¢) = 3 f3(¢) which is clearly
satisfied by any function f from G to F.

Under Subcase I-2, when ¥ = y = z(a) =+ ¢, or under Subcase II-1 when x = ¢
and y = n(a), or y = ¢ and x = x(a), (3) reduces to

£3e) + Pln(a)] + Pln(a)] = 3 f(e) f[m(a)] fma)] . (5)
In Subcase I1-2, when x = n(a) and y = n(d), (3) reduces to
@) + £(0) + £(c) = 3 f(a) 1(0) f(c) - (6)

All these functions presented under Cases 2 and 3 are defined to satisfy (4) in
general, and (5) in particular. A simple computation also shows that they satisfy (6).
The proof is completed.

Theorem 2. Lct G be a multiplicative group, and let F be a formally real field.
If /:G — F is a solution to (2) such that f(e) = 0, where e is the identity in G, then
Z[f] = {x | /(x) = 0} is a normal subgroup of G. Moreover, if in G/Z[f] the identity is
the only element of order 3, then f is a group homomorphism. In particular, if Z[f]
= {e}, then f is injective; and also, if e is the only element of order 3 in G, then f is
an isomorphism.

Proof. Since f(e) = 0, setting y = ¢ in (3) yields
0= fx) + PlxY)
= [f{x) + f(x~1)] [A(x) — f(%) f(x~2) + f(x~1)]

== %—[f(x) + Hx~YI{[ f(¥)— fie2)]2 + f3(x) + FR(x~ 1)} .

If [f(x) — f(x~ )12 + f2(x) + fA(x~}) = O, then f(x) = f(x~!) = 0, since F is formally
real. If f(x) = O or f(x~!) +°0, then by the preceding factorization, f(x) + f(x~1) = 0,
which also holds for f(x) = f(x~!) = 0. Thus

fx)+ f(x"1) =0, x€G. (7)

From (7) it follows that x € Z[f] if and only if x—! € Z[f]. Now suppose that

x € Z[f]and y € Z[f]. Then, by (3), P(xy) + Ply~1) + P(x 1) =3 f(xy) fy~?) f(x~) = 0.
This implies that f3(xy) = 0, f(xy) = 0, and xy € Z[f]. Thus Z[f] is a subgroup of G.
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For the normality of Z[f], it suffices to prove that for each x in G and for each z
in Z[f], there exists an element ¢ in Z[f] such that xz = ¢x. Set ¢ = xzx~1, clearly,
tx = (xz2x~1) x = xz To prove ¢t € Z[f], observe that

Plxzx) + Plx) + e ta?) = 3f(xzx?) [ (x) flz127Y) (8)

which is a direct consequence of (3). Moreover, by (3) again, f3(z=1x~1) 4 f3(x) + f3(2)
= 3 f(z=1x~1) f(x) f(2), which reduces to f3(z~1x~1) + f3(x) = 0 and —f3 (x 2)+ f3(x)
= 0, since f(z) =0 and f (=12~ 1) = —f (x 2).

Through factorization,

Plx) — P x2) = [fix) — Hx 2)] [f3(x) + f() fx 2) + (% 2)]
= [f(x) — f(x2)] [A(%) — fix) fz71272) + 2 (a7 1 27 Y)]

= U) = F AT + 570 + ) — (=153}

If the second factor is zero, then f(x) = f(z~12~1) = f(x) — f(2~1x71) = 0, i.e.,
fix) = f(z22x" ) =0. If f(x) = 0 or f(2~1x~1) & O, then the first factor must be
zero, and thus f(x) = f (¥ z) which also holds for f(x) = f (z~1x~1) = 0. Now back to (8):

Pxzx—1) = =3f(xzx~Y) f(x) f(xz) = — 3 f(x2271) f2(x), ie.,
Flrza=1) [Plrza) + 3] = 0.

This implies that either f(xzx~1) = 0 or f2(x2x~1) + 3/3(x) = 0. In both cases,
f(xzx~1) = 0. Thus xzx~! € Z[f] and Z[f] is a normal subgroup.

Next, it will be shown that the cosets of G modulo Z[f] coincide with the equiva-
lence classes of the relation defined by x ~ y if and only if f(x) = f(y). Now assume
that f(x) = f(y). By (3) and (7), P(x~1y) + A (y72) + f(x) = 3/ (x~1y) /(¥ /(%)
= Plxty) — ) + %) = =3 f(x71y) /() /(x). Now that f(x) = f(y), therefore,
Blx—1y) + 3f(x~1y) fA(x) = 0 and f(x—1y)[f2(x~1y) + 3/%(x)] = 0. This implies that
either f(x~1y) =0or f(x~1y) = f(x) = 0. In both cases x~1y € Z[f]. On the other hand,
y = x (x~1y), hence y € x and ¥ = y, where ¥ denotes the coset of x modulo Z[f]. In
particular, if f (¥) = f(y) and if Z[f] ={e}, then f(x~1y) =0,x 'y =¢ and x=y. In
this case, f is a one-to-one function.

Conversely, suppose x = y i.e., ¥ = x4 for some % € Z[f]. Then, by (3), /® (x %)
+ Pu) + P(x1) =3 f (xw) f(u~?) f(x~1) = 0. This yields 0= /(y) — 3(x) = (1/2) [/(y)
— (@] {*() + () + [/(x) + ()2}. Therefore, either f(x) = (y) or f(x) = {(y) = 0.
Thus x = y implies that f(x) = f(y).

In proving that f is an isomorphism under the conditions that Z[f] = {¢} and e
is the only element of order 3 in G, rewrite (3) to obtain

0= (x9) + Pl + Pl — 3/ (x) 1y fe)
= S UE9) + frD) + f )

(If (xy) — fy— D1 + [f?) — fla=9]* + [fx=Y) — £ (x)]7).
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If the second factor is O, then f(xy) = f(y~1) = f(x~1). Here f is proved to be
injective, therefore xy = y—1 = x~1, Hence 22y = xx~1 = ¢. This implies x = ¢ = v,
since e is the only element of order 3in G. If x #+ ¢ or y + ¢, then the first factor in the
preceding factorization must be 0, which also holds when x = ¢ and y = ¢. Thus,
flxy) = —fHx"Y) —f(y~) = f(x) + f(y) by (7), and { is an isomorphism from G to F.

To prove that f is a homomorphism under the assumption that ¢ is the only
element of order 3 in G/Z[f], define a function f : G/Z[f] = F by f(x) = f(x). Since
x~1y e Z[f] if and only if f(x) = f(y), f is well-defined and injective. Clearly, f factors
through G/Z[f] in the sense that f = f o ¢ where g is the quotient map. When f satisfies
(3) with f(e) = 0, f with f(e) = O satisfies (3) defined on G/Z[f] i.e.,

PEYY +PO) + PEY =37 @y 1) [ .
Since it is assumed that ¢ is the only element of order 3 in G/Z[f], hence, by the

preceding proof, f is an isomorphism from G/Z[f] to F. This in turn implies that
f=F o ¢is a homomorphism from G to F. The proof is completed.

III. Remarks

Theorem 2 enables us to determine solutions for (2) on G if f has a preassigned
set of zeros containing e. Some applications are in order. Let R+ be the multiplicative
group of positive reals and R be the field of real numbers. Functions f: R* — R
satisfying (2) with Z[f] = {1} abound. Clearly, for each non-zero %, f(x) = & log x is
such a one. On the other hand, let R, denote the multiplicative group of non-zero
reals. Consider functions f: R, — R satisfying (2) with preassigned Z[f] = {—1,1}.
Then obviously Ry/Z[f] is isomorphic to R+ and each function f: Ry/Z[f] — R satisfy-
ing (3) is an isomorphism. If f is taken to be f(x) = & logx with 2 + 0 and x > 0,
then f = (f 0 ¢) - Ry — R can simply be f(x) = k log |x|, which clearly satisfies (2)
with Z[f] = {—1,1}. Theorem 2 can be useful in other directions. Suppose that G is
an abelian group such that each element except the identity e has infinite order.
Let $ be a prime number different from 3. Then H = {x? | x € G} is a subgroup of G
and each element in G/H is of order . There is no isomorphism from G/H to a formally
real field F viewed as an additive group. Hence there does not exist any function
f: G — F satisfying (2) with Z[f] = H, otherwise, such an f induces an isomorphism f
by / = f o ¢ which yields a contradiction.

The study of (2) on groups is far from complete. Some other observation is
noted in the following. With each element a in G, an inner automorphism is associated
such that x in G is mapped to axa—1. If { is a solution to (2), then f, is also a solution,
where f, is defined by f,(x) = f(a x a~1), f, may not be equal to f if G is non-commutative.
The mapping (a, f) — /, defines an operation of G on the solution set S of (2). For
each fin S, the set {a | @ € G, f, = f} is a subgroup of G and is called the isotropy
group of f in G. The set {f, | 4 € G} is called the orbit of f under G. Orbits and isot-
ropy groups may be useful in the study of (2).

In Theorem 2, if the set of complex numbers is taken as the field F, then the
following factorization holds when f(e) = 0.

0 = fAx) + Px~Y) = /(%) + fx ] [A(%) — fix) fx~ + P(x7)]
= [f(x) + Hx=1)] [/(%) + o (x~Y)] [H(%) + «? flx~)] .

N
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From this it follows that f(x) = — f(x~1) or f(x) = —w f(x~1) or
fx) = — o f(x7).
It is not necessary that f(¥) = — f(x~1) for each x in G. This shows some of the

difficulties in the problem of determining the solution of (2) when f is complex-valued.
Ih-ching Hsu, St. Olaf College, Northfield, MN, USA
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Kleine Mitteilungen
Uber die Chordalkurve zweier Kegelschnitte

Die Hiillkurve der Geraden, die aus zwei Kegelschnitten %,, 2, Sehnen gleicher
Lange ausschueiden, heisse die Chordalkurve von %, und £,.

1. Die Chordalparabel zweier Kreise %,, %k, (Mittelpunkte K, K, Radien
71, 75). Es sei K, + K,. Mittelpunkt von K, K, sei F. Die Chordale von &, und k&, sei s.
Eine Gerade g habe von K, bzw. K, die Abstdnde p, bzw. p,. Die Normale aus F
auf g schliesse mit K; K, den Winkel o ein und schneide s im Punkt G. Es ist FG
= (p1 + p,)/2. Die von g aus k, und k&, geschnittenen Sehnen sind gleich lang, wenn
2 — p2 =72 — p2 ist. Daraus folgt (p, + p,) (ps— 1) =2 —r2oder 2. FG-K, K,-cosa
=72 — 7%, daher ist FG-cosa konstant. Alle G liegen auf s, denn fiir ¢ = O ist g = s.
Es folgt:

Satz 1. Alle Geraden, die die (nichtkonzentrischen) Kreise Ry, ky nach lingengleichen
Sehnen schneiden, umbiillen fiir vy + vy die «Chordalparabel» p von ky und k, (Brenn-
punkt F, Scheiteltangente s). p beriihrt auch die gemeinsamen Tangenten von Rk, und k,.
Fiir ; = r, zerfillt p (als Klassenkurve) in das Strahlbiischel F und in das Biischel
der zu K, K, parallelen Geraden.

g schneidet nur dann reelle Sehnen aus k, und k,, wenn |7, — 7, | < 2-FG <7, + 7,
ist; die Intervallgrenzen gehoren zu den gemeinsamen Tangenten von %; und Z,;
existieren 4 bzw. 2 bzw. O reelle gemeinsame Tangenten von %; und %,, so gibt es
2 bzw. 1 bzw. 0 Bégen auf p, deren Punkte Tangenten g mit reellen Sehnen von %,
und £, besitzen.

Da p durch F und s bestimmt ist, gilt die Umkehrung von Satz 1:

Satz 2. Eine Parabel p ist Chordalparabel je zweier Kreise, die sich auf der Scheitel-
tangente von p schneiden und deren Mitien auf der Parabelachse symmetrisch zum
Brennpunkt von p liegen.

2. Die Chordalgeraden dreier Kreise k; (Mitten K,, Radien 7,). Die Chordal-
parabel von k; und &; sei p,; (Brennpunkt F,; = Mitte von K, K;, Scheiteltangente
s;; = Chordale von %; und %;). Eine eigentliche gemeinsame Tangente von p,, und p;,
schneidet %, und %,, ebenso k; und k,, daher auch %, und %, nach lingengleichen
Sehnen. Sie beriihrt also auch p,,. Eine solche Gerade, die die &; nach drei lingen-
gleichen Sehnen schneidet, heisse eine Chordalgerade der k,.
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