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El. Math. Band 29 Heft 5 Seiten 105-128 10. September 1974

Über ein System partieller Differentialgleichungen
und einen zugehörigen Bergman-Operator

1. Einleitung
Die vorhegende Arbeit betrifft das System

grad u A grad v (1.1)

bestehend aus zwei linearen partiellen Differentialgleichungen 1. Ordnung

ux *iA + al*vy

wobei die Elemente der Matrix A (ajk) Funktionen von x und y sind, über die später
noch nähere Voraussetzungen gemacht werden. Systeme der Form (1.1) treten häufig
auf und verschiedenartig motiviert. Man denke etwa an die Funktionentheorie, die
pseudoanalytischen Funktionen von L. Bers [3] und I. N. Vekua [13], die
quasikonforme Abbildung (vgl. H. P. Künzi [9]), gewisse Existenzfragen für elliptische
Gleichungen (vgl. z.B. C. B. Morrey [12]) und Strömungsprobleme (s. Abschnitt 7).

Unseren Ausgangspunkt bilden einfache differentialgeometrische Fragen: In
Abschnitt 2 erörtern wir flächentreue Abbildungen im Zusammenhang mit (1.1) und
in Abschnitt 3 eine komplexe Schreibweise des Systems. Als zugehörige Integrabili-
tätsbedingungen ergeben sich in Abschnitt 4 zwei lineare partielle Differentialgleichungen

2. Ordnung, die im Zusammenhang mit Bergman-Operatoren von besonderem

Interesse sind. Was wir aus der Theorie dieser Operatoren brauchen, stellen
wir in Abschnitt 5 zusammen. In Abschnitt 6 gewinnen wir dann für die genannten
Gleichungen einen Bergman-Operator in expliziter Darstellung. Die Arbeit schhesst

mit einer kurzen Betrachtung zur Bedeutung der Systeme (1.1) in der Hydrodynamik.

2. Flächentreue Abbildungen
Das System (1.1) ist eine Verallgemeinerung der Cauchy-Riemann-Gleichungen.

Dies regt zu folgender Überlegung an: Es sei f(z) u(x, y) + iv(x, y) holomorph in
einem Gebiet G der z-Ebene, z x + iy. Wir ordnen / zwei Flächen im Ez zu, die
Realteilfläche

#(/)*. *{*,y) (*>y>u(x,y)) (x + iyeG)
und die Imaginärteilfläche

/(/): r(x, y) (x, y, v(x, y)) (x + iyeG).
Beide Flächen haben dieselbe Gauss-Krümmung (vgl. [7])

#=-|/'l*/(l+l/'l2)*.
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Trotzdem ist die Abbildung

T: R(f)-+I(f)
(*>y)*->(x,y) (2.1)

weder isometrisch noch konform, es sei denn, / ist konstant. T ist auch nicht geodätisch,

es sei denn, / ist linear; vgl. [8]. T ist aber flächentreu. Wir fragen nun, wie
allgemein (1.1) sein darf, ohne dass diese Flächentreue verlorengeht.

Satz 1. Es sei f(z) u(x, y) + i v(x, y), und u, v seien Lösungen von (1.1) in einem
Gebiet G. Dann gilt: Die durch (2.1) gegebene Abbildung T ist genau dann flächentreu,
wenn die Matrix A in (1.1) orthogonal ist.

Beweis. Notwendig und hinreichend für die Flächentreue der Abbildung T ist
die Gleichheit g gder Diskriminanten der 1. Grundform von R(f) und /(/). Nun gilt

g^l + ul+u2y
und entsprechend für /(/). Es folgt

g g <-* I grad u | | grad v |

Dies ergibt Bedingungen für die Matrix A. Ausgedrückt durch Spaltenvektoren
ax, a2 lauten diese:

I Oi I « 1, | a2 | 1, aj a2 0

A muss also orthogonal sein. Damit ist der Satz bewiesen.
Wir können nun zwei Fälle unterscheiden:

(I) D det A 1

(II) D det A - 1. (2.2)

Zugehörige orthogonale Matrizen bezeichnen wir mit Aj bzw. Au. Deren
Elemente lassen sich durch eine Winkelvariable a (x, y) ausdrücken. Wir schreiben

A x /cosa — sina\
_ /cosa sina\

Ai{* il//(a)= 2.3
\sina cosa/ \sma — cosa/

Den Cauchy-Riemann-Gleichungen entspricht dann A j (— ^r/2). Folglich gilt für
eine Lösung (u, v) e Cl(G) von (1.1): Die Funktion f(z) u(x, y) + iv(x, y) ist dann
und nur dann holomorph in G, wenn die Abbildung T flächentreu ist und die Kurven
u konst und v konst ein orthogonales Netz derart bilden, dass der gerichtete
Winkel von v konst nach u konst die Grösse n/2 hat. Fordern wir also gleichzeitig
Flächentreue von T und Orthogonahtät der Kurven u konst, v konst, so führt
dies im wesentlichen auf die Cauchy-Riemann-Gleichungen. Wir lassen nun die erste
dieser beiden Bedingungen fallen. Aus u konst, du 0, y* — ux\uy, den
entsprechenden Formeln für die Kurven v konst und der bekannten Orthogonalitäts-
bedingung erhalten wir dann den

Satz 2. Ein Kurvennetz u konst, v konst mit u, v e C*(E2) ist orthogonal genau
dann, wenn (u, v) eine Lösung von (1.1) in E2 mit einer schiefsymmetrischen Matrix A ist,
also von der Form

ux a(x, y) vy

Uj/ -a(x, y) vx. (2.4)
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3. Komplexe Form

Das System (1.1) lässt sich genau dann in der Form

ux + iuy (Ax + iA2) (vx + i vy) (3.1)

mit reellem Ax und A2 darstellen, wenn A die Gestalt

A={ Un M (3.2)
\~a12 axx]

hat, wie man leicht sieht. Derartige Systeme spielen eine Rolle bei pseudoanalytischen
Funktionen von L. Bers [3] und G. N. Poloshi (vgl. G. Kneis [5]). Interessanterweise
hat Ai die Gestalt (3.2), Au aber nicht. Auch (3.2) lässt sich eine orthogonale Matrix B
zuordnen, nämlich

B b~lA mit b (ax\ + aj)1/2.

Weiterhin können wir (3.1) vermöge

in der Form

u- Hv-, H axx — i aX2 (3.3)

schreiben oder mit co — u + iv auch

1 + iH

2 \d% dy)

<*% foy-z, / 1 + iH

4. Integrabilitätsbedingungen

Aus (1.1) mit A g CX(G) und dem inversen System

grad?; A~x grad« (4.1)

erhalten wir für Lösungen (u, v) e C2(G) die Integrabilitätsbedingungen

(a2X vx + a22 vy)x - (axx vx + aX2 vy)y 0 (4.2)

und

[D-1 (a21 ux - axx uy)]x + [D"1 (a22 ux - a12 uy)\ 0 (4.3)

mit D deti4.
Für konstantes A haben diese beiden Gleichungen dieselbe Form. Auch für

A An gilt dies. Wir betrachten im folgenden A Aj. Dann erhalten wir
A v + (olx cota + CLy) vx + (oLy cota — olx) vy 0 (4.4)

und eine ähnliche Gleichung für u, die genau die Form (4.4) (mit u statt v) annimmt,
wenn man y durch rj —y ersetzt. Wir brauchen also nur eine dieser beiden
Gleichungen zu betrachten, etwa (4.4).

Für (4.4) leiten wir in Abschnitt 6 eine explizite Lösungsdarstellung mittels
Bergman-Operatoren her. Dies bereiten wir jetzt vor. Wir setzen A At 6 C"(G)
(also A holomorph in G) voraus, lassen komplexe x und y zu und setzen

z x + iy, z* x — iy
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Für reelle x und y sind z und z* 5 konjugiert. Für komplexe x und y können
wir z und z* als neue unabhängige Variable benutzen und (4.4) überführen in die Form

2 sin a v„* + e~ia a,* vz + eia az vz* 0

oder

(_"...),-(.-**.)_.
oder auch

v*** + Tif— v> + ^2ST V 0. (4.5)
e -l i -e

Der Einfachheit halber haben wir hier v als Funktion von z, z* wieder mit v
bezeichnet. Eine einzelne der beiden ersten partiellen Ableitungen in (4.5) kann man
stets eliminieren, indem man in bekannter Weise v hw setzt und h geeignet bestimmt.
Beide erste Ableitungen kann man dann und nur dann aus (4.5) gleichzeitig
eliminieren, wenn a„* 0 ist, also a die Form

a(i, *•) oix(z) + ol2(z*) (4.6)

hat. Der Beweis ergibt sich durch direkte Rechnung oder auch auf dem Weg über die
Laplaceschen Invarianten. Die transformierte Gleichung ist

W'"+ 4 sin'«(_,_*)
W °-

Der Strich bezeichnet dabei die Ableitung nach der jeweiligen Variablen. Diese
reduzierte Form der Gleichung können wir weiterhin zugrundelegen, und zwar
betrachten wir im folgenden den wichtigen linearen Fall

ol(z, **) k (z + z*) + n\2 (4.7)

also die Gleichung

Lw wM. + w 0. (4.8)
cos2 (k (z + z*))

Dieser Hneare Fall spielt z.B. auch in der Hydrodynamik (bei Approximationen
der Poisson-Adiabate) eine Rolle; wir gehen hierauf im letzten Abschnitt kurz ein.

5. Bergman-Operatoren
Wir wollen für (4.8) einen Bergman-Operator angeben. Dazu brauchen wir die

folgenden Grundtatsachen:
Bergman-Operatoren B sind lineare Operatoren auf dem Raum der Funktionen /,

die in einem gegebenen Gebiet G der komplexen Ebene mit 0 e G holomorph sind, in
den Raum der Lösungen v einer homogenen linearen partiellen Differentialgleichung
Lv 0. S. Bergman [2] hat diese Operatoren eingeführt, um eine Möglichkeit zu
schaffen, aus funktionentheorjetischen Methoden und Sätzen eine Charakterisierung
allgemeiner Eigenschaften von Klassen von Losungen einer Gleichung Lv 0 zu
erhalten, z.B. Aussagen über den Regularitätsbereich, Lage und Art von Singularitäten,

das Koeffizientenproblem usw. Und man erhält solche Klassen von Lösungen,
indem man B auf gewisse Klassen von Funktionen (z.B. meromorphe Funktionen)
anwendet. Gleichung (4.8) hat die Form

Lv~ vMgm + b(zf z*) v + c(zt z*)v=0. (5.1)
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Sind die Koeffizienten b und c holomorphe Funktionen von z, z* in einem Gebiet
D Dxx D2 (0eDx, Dx ein Sterngebiet), so lässt sich für (5.1) ein Bergman-Operator
B definieren durch v=Bf,fe CW(DX), und

v(z, *?) (Bf) (z, g*) / g(z, z*, t) f (j z (1 - t*)\ (1 - fi)-W dt, (5.2)

wobei t reell ist. g nennen wir den Bergman-Kem oder Kern von B (generating function
bei S. Bergman).

Es sei g eine Lösung der Gleichung

f1 - *2) Zz*t ~ *-%. + 2ztLg 0 (5.3)

in einem Gebiet K: D x 1,1= (—1, 1), D Dxx D2 mit

D1 {z\\z\<q9q>0 fest} D2 {z* || z |< o}

Weiter gelte

(l-*2)1/2g,*->0 (*->±l)
gleichmässig in Z>, und es sei gz*/tz stetig in D x /. Dann ist (5.2) eine Lösung von
(5.1) in D. Und jede in einer Umgebung des Nullpunktes holomorphe Lösung von
(5.1) lässt sich darstellen in der Form

v Bxfx+B2f2; (5.4)

hierbei hat Bx fx die Form (5.2) mit g gx und einer Funktion / fx, die in einer
Umgebung des Nullpunktes der 2-Ebene holomorph ist; B2f2 hat auch die Form (5.2)
mit g g2 und einer Funktion / /2, die in einer Umgebung des Nullpunktes der
2*-Ebene holomorph ist. Vgl. S. Bergman [2]. Formel (5.4) bezeichnen wir kurz als

zweigliedrigen Ansatz.

6. Bergman-Operator für (4.8)

Die Gleichung (4.8) ist ein Sonderfall der Gleichung

w"- -__¦(«_(*) + «.(_*)) w-0' (bA)

der r —1/2 und ol(z, z*) k (z + z*) + n\2 entspricht. Die Transformation

zx exp (2 i cnx(z) — i n/2) z2 exp (2 ^' a2(^*) — i nj2)

würde auf die oft untersuchte Gleichung

a^,, + v[v+l) (1 + zxz2)~* w 0 (6.2)

führen (vgl. [1, 6, 14]). Aber das nützte uns nichts, denn aus dem Bergman-Kern
in [6] ergibt sich bei Rücktransformation kein Bergman-Kern für (6.1). Dies folgt aus
dem leicht zu beweisenden

Hilfssatz 1. Ein Bergman-Kern für

wzz* + c(z> z*) w 0 (6-3)

geht bei einer Transformation

zx hx(z), z% *,(«*)
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dann und nur dann in einen Bergman-Kern für die transformierte Gleichung über,
wenn hx(z) =yz mit konstantem y ist.

Um einen Bergman-Operator für (4.8) zu gewinnen, gehen wir direkt vor. g wird
als Potenzreihe in t angesetzt mit Koeffizienten, die von z, z* abhängen. Deren
Rekursion fällt besonders einfach aus, wenn wir

g(z, _• t) - 1 +f1,3(:.2(^_1) *„<*. *•)«» (6-4)

ansetzen. Substitution in (5.3) ergibt dann nämlich

p2it.(z,z*) c(z,z*) (6.5 a)

._„+«._.(*. **) (£.-,) (*. «*). P 1. 2 (6.5b)

Dass (6.4) nur gerade Potenzen von t enthält, bedeutet keine Beschränkung der
Allgemeinheit, wie man aus (5.2) erkennt. Eine nähere Betrachtung der Form des

rekursiven Differentialgleichungssystems (6.5) im Falle der Gleichung (4.8) führt auf
die Idee, die Koeffizientenfunktionen p2fl als Polynome in

q(z, z*) tana0 a0 k(z + z*)

anzusetzen. Dann wird

P%(z, **) — q(z, z*)

Aus (6.5 b) erhalten wir nun

P2^2 hptß (1 + f2) + jfp2fldq + h^x (6.6)

wobei der Punkt die Ableitung nach q bezeichnet und A^+1 eine willkürliche Funktion
von z ist. Über die h^ verfügen wir jeweils so, dass die p2ßl kein von q freies Glied
enthalten. Weiterhin legt (6.6) den Versuch nahe, p2fl vom Grade p in q zu wählen,
also nun insgesamt den Ansatz

__,(*• **) Z V-4(*> z*)a • /* L 2. (6.7)

zu machen. Dies führt beim Einsetzen in (6.6) zum Ziel. In der Tat folgt die Existenz
der Darstellung (6.7) daraus, dass sich die Konstanten i^^^ aus der folgenden
einfachen Rekursion ergeben:

(6.8)

r /i4-l, /*-!,..,/* + l-2{/*/2].
Damit ist die explizite Bestimmung eines Bergman-Operators für (4.8) geleistet,

und wir haben zusammenfassend den

Satz 3. Die Integrabilitätsbedingung (4.4) des Systems (1.1) mit A Aj lässt sich

genau dann gleichzeitig von beiden ersten partiellen Ableitungen befreien, wenn (4.6) gilt.
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Für <x.(z, z*) gemäss (4.7) erhält man die transformierte Gleichung (4.8). Ein zugehöriger
Bergman-Operator für eine Lösungsdarstellung (5.2) hat den Kern (6.4) mit Koeffizientenfunktionen

(6.7) und Konstanten X2 ^ a gemäss (6.8).

7. Vorkommen der betrachteten Gleichungen in der Hydrodynamik
Wir sind von differentialgeometrischen Fragen her auf Systeme der Form (1.1)

geführt worden. Einen anderen Zugang zu (1.1) und den betrachteten Gleichungen
zweiter Ordnung bieten gewisse zweidimensionale hydrodynamische Probleme.
Hierauf wollen wir abschliessend noch kurz eingehen.

In der xy-JLhene liege ein Profil vor, das von einer kompressiblen, nichtviskosen
Flüssigkeit stationär und wirbelfrei mit der Geschwindigkeit coQ in der positiven
%-Richtung angeströmt wird. Zirkulation sei nicht vorhanden, und es handle sich

um eine reine Unterschallströmung. Für die Geschwindigkeit cd gelte also überall
co < y ]/ dp/dg- Hierbei ist y die lokale Schallgeschwindigkeit, p der Druck und o
die Dichte. Dann existieren im Aussengebiet des Profils ein Geschwindigkeitspotential
u und eine Stromfunktion v, und diese beiden Funktionen sind Lösungen des Systems
(2.4) mit

a(x, y) 1Iq(x, y) (7.1)

Die dem Anströmungszustand entsprechende Dichte haben wir dabei zu 1

normiert. Nun benutzen wir die Polarkoordinaten o. Geschwindigkeit) und© Winkel

des Geschwindigkeitsvektors mit der #-Achse) der Hodographenebene und
bezeichnen u, v, als Funktionen von co, 0, einfach wieder mit u, v. Dann folgt (zur
Herleitung vgl. R. v. Mises [11], S. 250)

u^ - co-1 (M2 - l)ave (7.2)

ud coava).

Hierbei ist M cojy die lokale Mach-Zahl, und a I/o ist eine gegebene Funktion
von co. Als Integrabilitätsbedingung für (7.2) erhalten wir

(l-M2)avde + co(coavJ(i)^0 (7.3)'

und eine ähnliche Gleichung für u. Von co gehen wir zu der Variablen

rj f co-1 (1 - M*)1* del

über. Mit der Bezeichnung h2 (1 — M2)ll2a folgt dann aus (7.3)

h*vee+(h*vjv=0.
Die reduzierte Stromfunktion

v(rj,0) h(tj) v(rj,0)
erfüllt also die Gleichung

Av + a(rj) v 0 mit a(rj) - A"fo)/Afo) (7.4)

a hängt von der Form der Druck-Dichte-Beziehung ab. Für die Falkowitsch-Approximation

der Poisson-Adiabate (vgl. S. V. Falkowitsch [4], E. Lanckau [10]) wird

°w sinhM2Ä;_,.)) • (7-5)
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Setzen wir nun

z r) — r)o + i0, z* rj - rjo-i0
so gewinnt die Gleichung (7.4) mit o* gemäss (7.5) die Gestalt (6.1), und zwar erhält
man gerade den linearen Fall olx(z) iz, öl2(z*) iz*. Für v ergibt sich v (v + 1)

— kj4; man kann also v derart wählen, dass man eine möglichst gute Näherung
für che Poisson-Adiabate erhält. Erwin Kreyszig, University of Windsor, Ont.
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On a Cubic Functional Equation defined on Groups

I. Introduction
The following factorization yields the conditional identity az + bs + cz 3ab c ior

real numbers a, b and c with a + b + c 0.

a3 + b? + cz — 3a bc

=(a+b + c) (a2 + b2 + c2 - ab - b c - c a)

--(a+b + c) [(a - bf + (b - c)2 +(c- a)2]

(a + b + c) (a+bo> + c co2) (a + b co2 + c co) (1)

where co — (1/2) (1 — 1^3i) is a complex root of unity.
As an analogy, the following functional equation is proposed and studied

Wr1) + ny*-1) + /•(* x-1) - 3/(* y- *) f(y *-*) f(z *-*) (2)
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