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Uber ein System partieller Differentialgleichungen
und einen zugehdrigen Bergman-Operator

1. Einleitung

Die vorliegende Arbeit betrifft das System

grad = A grad v, (1.1)
bestehend aus zwei linearen partiellen Differentialgleichungen 1. Ordnung

U, = allvx + alﬂvy

Uy = Ag1¥; + Gge¥y
wobei die Elemente der Matrix 4 = (a;,) Funktionen von x und y sind, tiber die spéter
noch nihere Voraussetzungen gemacht werden. Systeme der Form (1.1) treten hiufig
auf und verschiedenartig motiviert. Man denke etwa an die Funktionentheorie, die
pseudoanalytischen Funktionen von L. Bers [3] und I. N. Vekua [13], die quasi-
konforme Abbildung (vgl. H. P. Kiinzi [9]), gewisse Existenzfragen fiir elliptische
Gleichungen (vgl. z.B. C. B. Morrey [12]) und Strémungsprobleme (s. Abschnitt 7).

Unseren Ausgangspunkt bilden einfache differentialgeometrische Fragen: In
Abschnitt 2 erdértern wir flichentreue Abbildungen im Zusammenhang mit (1.1) und
in Abschnitt 3 eine komplexe Schreibweise des Systems. Als zugehorige Integrabili-
titsbedingungen ergeben sich in Abschnitt 4 zwei lineare partielle Differential-
gleichungen 2.Ordnung, die im Zusammenhang mit Bergman-Operatoren von beson-
derem Interesse sind. Was wir aus der Theorie dieser Operatoren brauchen, stellen
wir in Abschnitt 5 zusammen. In Abschnitt 6 gewinnen wir dann fiir die genannten

Gleichungen einen Bergman-Operator in expliziter Darstellung. Die Arbeit schliesst
mit einer kurzen Betrachtung zur Bedeutung der Systeme (1.1) in der Hydrodynamik.

2. Fldchentreue Abbildungen

Das System (1.1) ist eine Verallgemeinerung der Cauchy-Riemann-Gleichungen.
Dies regt zu folgender Uberlegung an: Es sei f(z) = u(x, ) + ¢ v(x, y) holomorph in
einem Gebiet G der z-Ebene, z = x + 4. Wir ordnen f zwei Flichen im E,; zu, die
Realteilfliche

R(f): r(%,9) = (%, 9, u(x,9) (x+iyeG)
und die Imagindrteslfiiche

I(): 76, %) = (% 9, 9% ) E+iyeGC).

Beide Flichen haben dieselbe Gauss-Kriimmung (vgl. [7])

K=—FPQa+rP.
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Trotzdem ist die Abbildung
T: R(f) > I(f)

(%, y) = (%, 9) (2.1)
weder isometrisch noch konform, es sei denn, f ist konstant. T ist auch nicht geodi-
tisch, es sei denn, f ist linear; vgl. [8]. T ist aber flichentreu. Wir fragen nun, wie
allgemein (1.1) sein darf, ohne dass diese Flichentreue verlorengeht.

Satz 1. Es set f(z) = u(x, y) + 1 v(x, y), und u, v seien Losungen von (1.1) in einem
Gebiet G. Dann gilt: Die durch (2.1) gegebene Abbildung T ist genau dann flichentreu,
wenn die Matrix A in (1.1) orthogonal ist.

Beweis. Notwendig und hinreichend fiir die Flichentreue der Abbildung 7T ist
die Gleichheit g = g der Diskriminanten der 1. Grundform von R(f) und I(f). Nun gilt

g=1+u}+u}
und entsprechend fiir I(f). Es folgt
g=ge>|gradu|=|gradv]|.
Dies ergibt Bedingungen fiir die Matrix A. Ausgedriickt durch Spaltenvektoren

a,, a4 lauten diese:

lay|=1, Jlayl=1, aja,=0.

A muss also orthogonal sein. Damit ist der Satz bewiesen.
Wir kénnen nun zwei Fille unterscheiden:

() D=det A=1
(I) D=det A=—1. (2.2)

Zugehorige orthogonale Matrizen bezeichnen wir mit 4y bzw. 4;;. Deren Ele-
mente lassen sich durch eine Winkelvariable « (¥, y) ausdriicken. Wir schreiben

cosaa — sina cosa sina
Arle) = (sinoc cosot)’ Anle) = (sinoc — cosoc) ) (23)

Den Cauchy-Riemann-Gleichungen entspricht dann A4 (— z/2). Folglich gilt fiir
eine Losung (%, v) € CY(G) von (1.1): Die Funktion f(z) = u(x, y) + 4 v(x, y) ist dann
und nur dann holomorph in G, wenn die Abbildung T flichentreu ist und die Kurven
# = konst und v = konst ein orthogonales Netz derart bilden, dass der gerichtete
Winkel von v = konst nach u = konst die Grésse 7/2 hat. Fordern wir also gleichzeitig
Flichentreue von T und Orthogonalitit der Kurven # = konst, v = konst, so fiihrt
dies im wesentlichen auf die Cauchy-Riemann-Gleichungen. Wir lassen nun die erste
dieser beiden Bedingungen fallen. Aus = konst, du = 0, y' = — u,[u,, den entspre-
chenden Formeln fiir die Kurven v = konst und der bekannten Orthogonalitits-
bedingung erhalten wir dann den

Satz 2. Ein Kurvennetz u = konst, v = konst mit u, v € C*(E,) ist orthogonal genau
dann, wenn (u, v) esne Losung von (1.1) in Eg mit esner schiefsymmetrischen Matrix A ist,
also von der Form

“x = a(x, y) vy ’ .

U, = —a(x, y) v,. (2.4)
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3. Komplexe Form

Das System (1.1) ldsst sich genau dann in der Form

u,+1u, = (A, +14,) (v,+ 7v,) (3.1)
mit reellem A4, und A4, darstellen, wenn A die Gestalt
4 = ( an “12) (3.2)
— 43 4n

hat, wie man leicht sieht. Derartige Systeme spielen eine Rolle bei pseudoanalytischen
Funktionen von L. Bers [3] und G. N. Poloshi (vgl. G. Kneis [5]). Interessanterweise
hat A die Gestalt (3.2), Ayy aber nicht. Auch (3.2) lisst sich eine orthogonale Matrix B
zuordnen, nimlich

B=0b"'4 mit b= (a: + a5/

Weiterhin kénnen wir (3.1) vermége

i-l(f_+~i)
0z 2 \ox "0y

in der Form

schreiben oder mit w = # + zv auch
- —14++H
=t J=m

4. Integrabilititsbedingungen

Aus (1.1) mit 4 € C}(G) und dem inversen System
gradv= 4-1 grad« (4.1)
erhalten wir fiir Losungen (u, v) € C*(G) die Integrabilitdtsbedingungen

(“21 U, + Aga vy)x - (all Uy + ST vy)y =0 (4'2)
und

[D-1 (agy u, — ay; u,)], + [D~! (a3 4, — a3au,)], =0 (4.3)
mit D = det 4.

Fiir konstantes A haben diese beiden Gleichungen dieselbe Form. Auch fiir
A = Ajy gilt dies. Wir betrachten im folgenden 4 = A;. Dann erhalten wir

Av + (o, cota + ) v, + (o, cotax — o) v, =0 4.4)
und eine dhnliche Gleichung fiir «, die genau die Form (4.4) (mit « statt v) annimmt,
wenn man y durch 9 = —y ersetzt. Wir brauchen also nur eine dieser beiden Glei-
chungen zu betrachten, etwa (4.4).

Fiir (4.4) leiten wir in Abschnitt 6 eine explizite Losungsdarstellung mittels

Bergman-Operatoren her. Dies bereiten wir jetzt vor. Wir setzen 4 = 47 € C%(G)
(also 4 holomorph in G) voraus, lassen komplexe x und y zu und setzen

2=x+4+1y, *=x-—1y.
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Fiir reelle x und y sind z und 2* = z konjugiert. Fiir komplexe x und y konnen
wir z und 2* als neue unabhingige Variable benutzen und (4.4) iiberfiihren in die Form

2sina v, + 6% a0, + 6%, V0 =0

oder
(6% v50), — (671 v,),a =0
oder auch
{ix ' {a
[/ ‘—275—’— v, + “‘——*—”“‘“_‘_'_2‘“ Ve =0. (45)
et 1 1—¢

Der Einfachheit halber haben wir hier v als Funktion von z, 2* wieder mit v be-
zeichnet. Eine einzelne der beiden ersten partiellen Ableitungen in (4.5) kann man
stets eliminieren, indem man in bekannter Weise v = hw setzt und 4 geeignet bestimmt.
Beide erste Ableitungen kann man dann und nur dann aus (4.5) gleichzeitig elimi-
nieren, wenn a,,s = 0 ist, also « die Form

(2, 2%) = ay(2) + ay(2*) (4.6)
hat. Der Beweis ergibt sich durch direkte Rechnung oder auch auf dem Weg iiber die
Laplaceschen Invarianten. Die transformierte Gleichung ist

“1f(z) og'(2*) w=0
4 sin? a(z, 2*)
Der Strich bezeichnet dabei die Ableitung nach der jeweiligen Variablen. Diese

reduzierte Form der Gleichung koénnen wir weiterhin zugrundelegen, und zwar
betrachten wir im folgenden den wichtigen linearen Fall

oz, 2*) =k (2 + 2*) + =2, (4.7)
also die Gleichung

w

5*

R3[4
cos? (k (z + z*))
Dieser lineare Fall spielt z. B. auch in der Hydrodynamik (bei Approximationen
der Poisson-Adiabate) eine Rolle; wir gehen hierauf im letzten Abschnitt kurz ein.

Lw=w_.+ w=0. (4.8)

5. Bergman-Operatoren

Wir wollen fiir (4.8) einen Bergman-Operator angeben. Dazu brauchen wir die
folgenden Grundtatsachen:

Bergman-Operatoren B sind lineare Operatoren auf dem Raum der Funktionen f,
die in einem gegebenen Gebiet G der komplexen Ebene mit 0 € G holomorph sind, in
den Raum der Losungen v einer homogenen linearen partiellen Differentialgleichung
Ly = 0. S. Bergman [2] hat diese Operatoren eingefithrt, um eine Mdglichkeit zu
schaffen, aus funktionentheoretischen Methoden und Sdtzen eine Charakterisierung
allgemeiner Eigenschaften von Klassen von Losungen einer Gleichung Lv = 0 zu
erhalten, z.B. Aussagen iiber den Regularititsbereich, Lage und Art von Singulari-
tdten, das Koeffizientenproblem usw. Und man erhilt solche Klassen von Losungen,
indem man B auf gewisse Klassen von Funktionen (z. B. meromorphe Funktionen)
anwendet. Gleichung (4.8) hat die Form

Ly=v,,+ b(z, 2*) v,e + ¢(2,2%¥) v=0. (5.1)
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Sind die Koeffizienten 4 und ¢ holomorphe Funktionen von z, z* in einem Gebiet
D = D, x D, (0 € D,, D, ein Sterngebiet), so ldsst sich fiir (5.1) ein Bergman-Operator
B definieren durch v = Bf, f € C*(D,), und

v(2, 2*) = (Bf) (2, 2*) = fl gz, 2%, 1) f (—%« z2(1— t2)) (1 —2)-124z, (5.2)

wobei ¢ reell ist. g nennen wir den Bergman-Kern oder Kern von B (generating function
bei S. Bergman).
Es sei g eine Losung der Gleichung

(1 —22) g, —tga+22tLg=0 (5.3)
in einem Gebiet K: =D X I, I = (-1, 1), D= D; X D, mit

Di={z|lz| <p,0>0fest}, Dy={z*|z]|<p}.
Weiter gelte

(L—Prg, >0 (t— 1)

gleichmadssig in D, und es sei g,./t z stetig in D x I. Dann ist (5.2) eine Lésung von
(5.1) in D. Und jede in einer Umgebung des Nullpunktes holomorphe Lésung von
(5.1) lasst sich darstellen in der Form

v=Bify+ Bsfs; (5:4)

hierbei hat B, f, die Form (5.2) mit g = g, und einer Funktion f = f,, die in einer
Umgebung des Nullpunktes der z-Ebene holomorph ist; B, f, hat auch die Form (5.2)
mit g = g, und einer Funktion f = f,, die in einer Umgebung des Nullpunktes der
z*-Ebene holomorph ist. Vgl. S. Bergman [2]. Formel (5.4) bezeichnen wir kurz als
zwergliedrigen Ansatz.

6. Bergman-Operator fiir (4.8)

Die Gleichung (4.8) ist ein Sonderfall der Gleichung
_ ¥ (v + 1) ay'(2) a'(2*)
B sin? (og(z) + aa(e¥))

der v = —1/2 und a(z, z*) = & (2 + 2*) 4+ /2 entspricht. Die Transformation

-0, (6.1)

zy=-exp (21 aq(2) — 1 7f2), 2y5=exp (27 ay(z*) — ¢ 7/2)
wiirde auf die oft untersuchte Gleichung
W, ,, TY @+ 1) (14 22)2w=0 (6.2)

fithren (vgl. [1, 6, 14]). Aber das niitzte uns nichts, denn aus dem Bergman-Kern
in [6] ergibt sich bei Riicktransformation kein Bergman-Kern fiir (6.1). Dies folgt aus
dem leicht zu beweisenden

Hilfssatz 1. Ein Bergman-Kern fiir
Wye+c(2,2*)w=0 (6.3)
geht bet exner Transformation

zp="m2), z5= hy(z*)
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dann und nur dann in einen Bergman-Kern fiir die transformierte Gleichung diber,
wenn hy(z) = y 2 mit konstantem p ist.

Um einen Bergman-Operator fiir (4.8) zu gewinnen, gehen wir direkt vor. g wird
als Potenzreihe in ¢ angesetzt mit Koeffizienten, die von z, z* abhidngen. Deren
Rekursion fillt besonders einfach aus, wenn wir

»
gzz"t-—l—l—z 22)

P2 (2, 2%) 2F (6.4)

(2u—1)
ansetzen. Substltutlon in (5.3) ergibt dann ndmlich
be, 5(2, 2¥) = c(z, 2¥) (6.5a)
Pruse, ol %) = (Lpg,) (5, 2%), p=1,2,.... (6.5b)

Dass (6.4) nur gerade Potenzen von ¢ enthédlt, bedeutet keine Beschrinkung der
Allgemeinheit, wie man aus (5.2) erkennt. Eine nihere Betrachtung der Form des
rekursiven Differentialgleichungssystems (6.5) im Falle der Gleichung (4.8) fiihrt auf
die Idee, die Koeffizientenfunktionen p, , als Polynome in

q(z, 2*) = tanay, o= k(z + 2*),

anzusetzen. Dann wird

k
?2(2" 2*) = ”4"' Q(Z; Z*) .

Aus (6.5b) erhalten wir nun

. k
Poure=Fkps, (1 + ¢%) +“‘“./P2pd9 + hyta (6.6)

wobei der Punkt die Ableitung nach ¢ bezeichnet und 4, 1, eine willkiirliche Funktion
von z ist. Uber die 4 , verfiigen wir jeweils so, dass dle P2, kein von g freies Glied
enthalten. Weiterhin legt (6.6) den Versuch nahe, $,, vom Grade u in ¢ zu wihlen,
also nun insgesamt den Ansatz

pa 2, %) = 2: Rapgdle ), u=12..., (6.7)

zu machen. Dies fiihrt beim Einsetzen in (6.6) zum Ziel. In der Tat folgt die Existenz
der Darstellung (6.7) daraus, dass sich die Konstanten 4, ,,, aus der folgenden ein-
fachen Rekursion ergeben:

12.1"‘:]3/4
Rayi00=0, A,,,=0(@<0,0>pu
‘ 1 1)\2 ~
o=k {7 (7= ) Bonra 0+ Vi ©68)

r=u+1, pu—1,..,u+1-2{u/2].
Damit ist die explizite Bestimmung eines Bergman-Operators fiir (4.8) geleistet,
und wir haben zusammenfassend den

Satz 3. Die Integrabilititsbedingung (4.4) des Systems (1.1) mut A = Ay ldsst sich
genau dann gleichzestig von besden ersten partiellen Ablestungen befreien, wenn (4.6) gilt.
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Fiir a2, 2*) gemdss (4.7) erhilt man die transformierte Gleichung (4.8). Ein zugehoriger
Bergman-Operator fiir esne Losungsdarstellung (5.2) hat den Kern (6.4) mit Koeffizienten-
funktionen (6.7) und Konstanten 2y ,, , gemdss (6.8).

7. Vorkommen der betrachteten Gleichungen in der Hydrodynamik

Wir sind von differentialgeometrischen Fragen her auf Systeme der Form (1.1)
gefithrt worden. Einen anderen Zugang zu (1.1) und den betrachteten Gleichungen
zweiter Ordnung bieten gewisse zweidimensionale hydrodynamische Probleme.
Hierauf wollen wir abschliessend noch kurz eingehen.

In der xy-Ebene liege ein Profil vor, das von einer kompressiblen, nichtviskosen
Fliissigkeit stationdr und wirbelfrei mit der Geschwindigkeit w, in der positiven
x-Richtung angestrémt wird. Zirkulation sei nicht vorhanden, und es handle sich
um eine reine Unterschallstromung. Fiir die Geschwindigkeit @ gelte also iiberall
w <y =V dp|dp- Hierbei ist y die lokale Schallgeschwindigkeit, # der Druck und g
die Dichte. Dann existieren im Aussengebiet des Profils ein Geschwindigkeitspotential
u und eine Stromfunktion v, und diese beiden Funktionen sind Losungen des Systems
(2.4) mit

a(x,y) = 1fo(x, y) . (7.1)

Die dem Anstromungszustand entsprechende Dichte haben wir dabei zu 1 nor-
miert. Nun benutzen wir die Polarkoordinaten w (= Geschwindigkeit) und @ (= Win-
kel des Geschwindigkeitsvektors mit der x-Achse) der Hodographenebene und be-

zeichnen #, v, als Funktionen von w, @, einfach wieder mit #, v. Dann folgt (zur
Herleitung vgl. R. v. Mises [11], S. 250)

u,=w1M=*—1)av, (7.2)
%0 = wava) .

Hierbei ist M = w/y die lokale Mach-Zahl, und a = 1/p ist eine gegebene Funktion
von w. Als Integrabilitdtsbedingung fiir (7.2) erhalten wir

(1 — M? avyy+ o (wav,), =0 (7.3)

und eine dhnliche Gleichung fiir ». Von w gehen wir zu der Variablen
n = f w1 (1 — M2 de
@o

iiber. Mit der Bezeichnung 4% = (1 — M?)Y24 folgt dann aus (7.3)

k2 Ue& + (h2 v”),” = O .

Die reduzierte Stromfunktion
v(n, ©) = hx) v(n, 6)
erfiillt also die Gleichung
Av+o(n)v=0 mit o(n) =—h"(n)/hn). (7.4)
o hingt von der Form der Druck-Dichte-Beziehung ab. Fiir die Falkowitsch-Appro-
ximation der Poisson-Adiabate (vgl. S. V. Falkowitsch [4], E. Lanckau [10]) wird
ko

. 7.5
st (2 (7 = o) {7:3)

o(n) =
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Setzen wir nun
so gewinnt die Gleichung (7.4) mit o gemdss (7.5) die Gestalt (6.1), und zwar erhilt
man gerade den linearen Fall a,(2) = 72, ay(2*) = ¢2*. Fiir v ergibt sich » (v + 1)

= — ky/4; man kann also » derart wihlen, dass man eine moglichst gute Niherung
tiir die Poisson-Adiabate erhilt. Erwin Kreyszig, University of Windsor, Ont.
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On a Cubic Functional Equation defined on Groups

I. Introduction

The following factorization yields the conditional identity a® + % + ¢3 = 3a b¢ for
real numbers ¢, band cwitha + b+ c = 0.
a®+ b+ —3abc
=(@a+b+c) (a®+b2+c2—ab—bc—ca)
1
= —2-(a+b+c) [(@a— 02+ (b —c)®+ (c — a)¥]
=(@+b+c) @+dbw+cw?) (@+ b0+ cw) (1)

where w = — (1/2) (1 — ¥ 34) is a complex root of unity.
As an analogy, the following functional equation is proposed and studied

Py + Pz + Plza) = 3f(xy ) {y =) Hz27Y): (2)

i
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