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A new proof of the reciprocity theorem for Dedekind sums

If
(%] 1 if x is not an int
x — [¥] — —, if x is not an integer,
() = 2 i
0, otherwise,

the classical Dedekind sum s(%, k) is defined by

k-1
st k) = 2 ((knfR)) ((n]R),
n=1
where % is a positive integer, and 4 is any integer. The most famous and useful
property of these sums is the following result.
Reciprocity Theorem. If 2 and % are positive integers, and (%, £) = 1, then

1 1 (h K 1
h = e e | 1
B+ 56 ) =~ + 17 (545 57 )

The beautiful, new monograph [1] by Rademacher and Grosswald presents four
distinct proofs of (1). In this note, we give a completely new, short proof of (1).

Our proof is based on the classical Poisson summation formula. If fis of bounded
variation on [a, b],

b

Zb' {f(n+0)+f(n—0)}= [ f(x)dx + 2 f f(x) cos Lmrnx)dx, (2)

n=1
a

where the dash ' on the summation sign indicates that for the terms corresponding
ton =a and n = b, only f (4 + 0) and f (b — 0), respectively, are counted. Leta = 0,
b=k, and f(x) = ((hx/k)) ((x/k)) in (2). Observe that f(0+ 0) = f(k—0) = 1/4. On
the right side of (2), let x = ky in each of the integrals. An easy calculation [1, p. 23],
yields

/ (b /R)) (xR dx = Rf12 .

Hence, (2) gives

k o0
e B k I(k, h,n), 3
g SR =+ 2k X Tk b 3)
where

1

I(k, h,n) /((hy)) ((y)cos 2anky)dy.

0
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We now evaluate I(%, 4, n,). Write
(r +1)/h

Ik, h, n) = hz: /(hy-—r——%) (y——%) cos 2mnky)dy

-0
Ih

1 (r+1)/h

=f<hy-%)(y %)cos(z:wnkydy Z/y—M)COS(Zﬂ”k}’)dy

0
1

1 1
=/ (ky—z) (y—?)cos(Znnky)dy /y—-— cosZanky)dy.
7==1

0
Integrating by parts, we obtain

1 1
I(k,h,n)——m%— {Zhy—?(h—}-l)} sin 2z n ky)dy

mzz {(— — —1—-) sin (27 n kj/h) —?im—- (1-—cos(2nnk7/h )}

j=1
h b1 -1
- Qrnk)? + nk ((ﬁh)sm(Znnky/h —@—;— Zcos (27 nkijlh).
7....

The last sum on the r1ght side above is 0 except when n/h = u, say, is a positive
integer, in which case the sum is equal to 4.

Using the above calculation, we find now that (3) yields
1 k A 31
e h, k) = e 4
7 TR = ot Sah e )

sm (2rnkjlh) 1

h-1 oo
+1“;1‘ ( /h)) Tn + 2nhk 2

=k/12h+ h/12k — ‘2 (G/m) ((k5/m) + 112 kK,

where we have used the well known Fourier series for ((x)),

((x)) _ Z“‘, sin (2 7w n %) .

# =1 TN

Equation (4) is clearly equivalent to (1), and so the proof of the reciprocity theorem
is complete.

The ideas employed above can be applied to many generalizations of the Dede-
kind sums. An account of this work will be given elsewhere.

Bruce C. Berndt, University of Illinois, Urbana, Illinois, USA
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