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A note on Bernoulli numbers and polynomials

Put
n-1

Sk Sk(n) 27 ak '

It is well known that

S\ S„ 2 S* 56 + S7. (1)

The general formula of this type was found by Stern [1, p. 20]:

2»->s"= y m \ s

We recall that [2, Ch. 2]

(2)

S*W jtTi * (3)

where BkMX(n) is the Bernoulli polynomial of degree k + 1 and _9^ + 1= Bk + 1(0).
The Bernoulli polynomial may be defined by

zexz ~ jj*

^T £*•<*> ^ <4)

Substituting from (3) in (2) we get

'-,sr"&(y"+.)^^- ">

Since Sx n (w — l)/2, it is clear that (5) is a polynomial identity for w 1, 2, 3,

Therefore we may write

<"—"•-^.UOl'-^-»t-"-
Since 2?^(#) mBm_x(x), it follows that

fn(2.-l)M„-l)r 22; / m \

Conversely Integration of (6) gives (5).
A slightly simpler formula is

{m +!)(„- i/j- £ (%j++\) 2~*J *.-»(*)

(6)

(7)

To prove (7) we make use of (4). Clearly

i* s*w *T~ *i*^i*9
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so that
00 zk °° (zl2)2i+1

Equatmg coefficients of zm + *, we get (7)
Next we recall the expansion [2, p 28]

**(*) Z (*) 2_J ^ (* - Vi)*"' (8)

where

Dk 2*£Ä(V2) 2(1- 2*-*) B*. (9)

It follows from (9) that

öa*+i 0, (- l)k D2k > 0 (k 0, 1, 2, (10)

The first few values are

17 31
Z)0= 1, £>2 D* —, jD60 ,2 3 4 15 6 21

Thus (7) and (8) are an inverse pair It is convement to consider separately even
and odd values of m and k Replacmg mby 2 m, (7) becomes

m /2 m 4- 1 \
(2 m + 1) (x - V,,)2"1 Z\ 2]

2~2m+2} B*J{X) (11)

Simüarly, by (8) and (10)

Bik (x) Z (2 *) 2~*k+2s D*«-*° (* - Vi)" (12)

Substituting from (12) in (11), we get

(2m + l) (x- */,)«» Z f** *) 2_2m Z (21) 22f ^-«« <* - V2)2J >

so that

g {2X*) (2-)22* ^- (2M+x) 22m<5- (13)

For odd values of the parameters, (7) and (8) yield

(2 m + 2) (x - W+* Z (22™ Xl) 2_2m+2' B*J+1(X)' (14)

and

B2k+1(x) Z (l^lf} 2~*k+as D2k-as (x - V_)"'+1. (15)

respectively Hence

(2m + 2)(x- */,)»-+» Z (2^1) 2~2mj§ (2- + 1) 2"Z)^-»^*- W'-1.
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so that

The formulas (13), (16) evidently imply the following matrix formulas:

[fV, l)\ [{17) *¦D°--] - [<2»+"'- >-] ¦ i")

where m, s 0,1,2,. N — 1 and _V is either a positive integer or infinity. Thus
in particular we have found inverses of the matrices

[(*_.')]¦ [(*::?) K s 0, 1, 2, N - 1) (19)

For apphcations it is convenient to state the following result.

Theorem 1. The set of equations

(m+l)xm Z f^it)2_"y-t. (» 0,1.2,...) (20)

ts equivalent to the set

ym= Z 2~*J D*> x-*> (m 0.1. 2,.. (21)

Separating even and odd values of m we have

Theorem 2. The set of equations

(2m+l)xm^z(2m2'l1)22'-imyj (» 0,1,2,...) (22)

is equivalent to the set

*» 4 (2 T)22j_2m Ü2m-*j Xj {m=0> *•2* • • ° • (23)

Täö se2 o/ equations

{2m + 2)xm ZJ*i™^2V-*"y] («-0,1,2,...) (24)

is equivalent to the set

y- j§ (2 7 +1)22j~2ra D*m-*> *' fw 0,1,2,...). (25)

L. Carlitz, Duke University, USA
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