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90 L. CarriTZ: A note on Bernoulli numbers and polynomials

A note on Bernoulli numbers and polynomials

Put
n—1

a=o0

It is well known that

$2=3S, 2S8t=5,+S,. (1)
The general formula of this type was found by Stern [1, p. 20]:
1Sy = ( " )5 - 2
1 21’%1; 2]+ 1 2m—-27-1 ( )
We recall that [2, Ch. 2]
B, ,n)— B
S () = k1 K+l

where B, ,(n) is the Bernoulli polynomial of degree 2 + 1 and Bg,, = B;,4(0).
The Bernoulli polynomial may be defined by

(4)

co Zk
T

zex? _ B()
ez—l*sz: Y

Substituting from (3) in (2) we get

m-1 om __ m Bzm—zj(”) - Bzm-zj -
2 Sl ~21§m (2] + 1) : 2m — 27' . (D)

Since S; = n (» — 1)/2, it is clear that (5) is a polynomial identity forn =1, 2,3, ...
Therefore we may write

m Bym—2i(%) — Bap—_3;
— 1)) =2 . 4 L S
(¢ (x — 1)) 2,2:,,, (27+1) 2m— 2

Since B,,(x) = mB,,_4(x), it follows that

m2x—1) (x(x—1)""1=2 m
( ( ) 2j§m (2]-+ 1) Bzm~2j-1(x) . (6)
Conversely integration of (6) gives (5).
A slightly simpler formula is

(m+1

(m + 1) (x—l/z)mzz 2j+1

) 2% Byayt. (7
2i<m
To prove (7) we make use of (4). Clearly

e 2 ze* %)
2 By (x) Bl A2 g
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so that
2k o] (2/2)2j+1

(x—1/2) z
zel*—112 ZZBk(x '2(21.+1)!.

1=0

Equating coefficients of 271, we get (7).
Next we recall the expansion [2, p. 28]

By(x) = f WEREACERALS Q
where

D, =2k B,(},) = 2 (1 — 2k-1) B, (9)
It follows from (9) that

Dypy1=0, (—1)¥Dy, >0 (k=0,1,2,...). (10)
The first few values are

Dy=1, D, = —%, D4=—17§, Dg=— %i—

Thus (7) and (8) are an inverse pair. It is convenient to consider separately even
and odd values of m and k. Replacing m by 2 m, (7) becomes

@me+1) (o= tgem= 37 (277 1) e By, 1)
=0
Similarly, by (8) and (10)
: 2 k 2k+2 1/ \2
By ()= Q) 2 2- * Dog_gy (8 — 15)%° . (12)
s=0

Substituting from (12) in (11), we get

2m+1) (x— 1y)2m = zmj (2m+ 1) 2-2m 2" ( ) 225 Dy g (& — 1g)?*

=t s=0

so that
2 ( ”;_;— ) (2 i) 225 Dy;_gs=(2m+ 1) 22m 4, .. (13)
]=s

For odd values of the parameters, (7) and (8) yield

o 2 2 )
@m+2) (rfemri= 3 (0T 2w By ), (14)
i=0 7+
and
k(2B +1
Byri1(®) = f;: (2s + 1) 2-2k+2s Doy g (¥ — 1/2)23+1 , (15)

respectively. Hence

i 1
@m+2) (= gmes = (20 F) 2o 33 (37 1) 200y, oo,
-0

s§=0
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so that
il 2m+2) (27‘+1)
. 225 D, o= (2m+2) 22m . (16
,._24:(27+1 2s+1 22 = { ) ' )

The formulas (13), (16) evidently imply the following matrix formulas:

[(2’2:— 1)} [(z :n) 28 Dzm—zs] = {(2m+ 1) 22m 6,,,,5] , (17)

[(2?1 f)] [(32"1 i) 2% Dzm-%] = [(Zm + 2) 22m 6,,,,3] , (18)

where m, s =0,1,2,..., N —1and N is either a positive integer or infinity. Thus
in particular we have found inverses of the matrices

[(2";:1)} [(i;”if)] (m,s=01,2 ..., N—1). (19)

For applications it is convenient to state the following result.

Theorem 1. The set of equations

m+ 1 .
m+1)x,= 2 (z;‘+1) 2-% y, ., (m=0,1,2,..) (20)
21<m
is equivalent to the set
Y = D, (;") 2-% Dy; %p_y; (m=0,1,2,...). (21)
21<m i

Separating even and odd values of m we have

Theorem 2. The set of equations

L
2m+1) xm=2(2";;_1)22-"—2'" ¥; m=0,1,2,...) (22)
i=0
ts equivalent to the set
”
Vo =D, (2 ’,”) 2= D, _x (m=0,1,2,..). (23)
i=0 7
The set of equations
(2m+z)x,,,=2(§;”:f) 2i-tm oy (m=0,1,2,...) (24)
=0
is equivalent to the set
= 1 .
Y= (2;”1]) 2i-m D, _x  (m=0,1,2,..). (25)
=0 :
L. Carlitz, Duke University, USA
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