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Kleine Mitteilungen
Note on defining arc length

We prove here that for piecewise convex (plane) curves there exist simple and
intuitive axioms specifying arc length precisely. Our axioms (and our proof) could
readily be included in a freshman or sophomore calculus course. First let us review
some approaches to arc length.

(1) One may define a curve I" to be rectifiable if L = (the sup of lengths of polygons
inscribed in this curve) exists < co. A typical theorem is that if the functions in some
parametric representation have continuous derivatives, then L < oo and L is calcul-
able by the familiar integral. (See e.g. [2, §79] or [4, pp. 13-14].) In this approach L
is called the length of I" without further question.

(2) More modern treatments have a slightly more skeptical approach. Forexample
in Apostol [1, p. 247], the need to give an intuitively (and mathematically) acceptable
definition of arc length is more clearly felt than in the earlier works mentioned above.
Nonetheless the assertion there that clearly the length of /"' must be defined as > L
(above) is certainly more compelling than the subsequent weaker assertion that “it
seems reasonable to define the length of the curve to be [the above number L]”.

(3) There exists a completely axiomatic approach involving Lebesgue measure
and integration, in arbitrary finite dimension [5, Chapter 9]. But one of the axioms
there is a disguised version of the ordinary formula for arc length.

(4) J. Mycielski kindly mentioned to the author the work of Zykov [6], who also
pointed out the need for an upper bound on arc length. His treatment is more general
than ours, but less axiomatic and less accessible to calculus students.

- We now state our axioms for arc length, which apply (at least) to the class
C(R) of functions having continuous derivative. In the axioms, L(f, a, b) denotes the
length of the curve defined by f on the interval [a, 5].

Axioms
Ax. 1. Two arcs which are congruent (i.e. under rigid motions) have the same length.
Ax.2, Ifa < b <cand feC} then L(f,a,¢c) = L(f,a, b) + L(f, b, c).
Ax. 3. If f is a constant function, then L(f, a,b) = b — a.
Ax. 4. (Shortest distance) If fis a linear function such that f(a) = f(a) and f(b) = f(d),
then L(f, a, b) < L(f, a, b).

Ax.5. If | f(t) | < |g'(t) | fora < ¢ < b, then L(f, a, b) < L(g, a, b).

Let us say that f € C}(R) is convex on the interval [a, b] iff f'(f) is a monotone

(increasing or decreasing) function of £ for 2 < ¢ < b, and that f is precewise convex iff
there exist numbers @, < ... < ay such that f is convex on each interval [— oo, a,],
[ay, agl, . . ., [an—1, an], [an, o0).

Theorem. There exists an arc-length function L(f, a, b), defined for all f € C},
obeying Axioms 1-5. Such L is unique on piecewise convex f.

Proof. It is well known that

b
Lf,et) = [ Y1+ (P (1
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satisfies the axioms. Thus we need only show that if L(, -, -) obeys the axioms, then (1)
holds for every piecewise convex f. By Axioms 1 and 2, we may assume that f’ is
monotone increasing on [a, b]. Furthermore, Axioms 1, 2 and 3 imply that segments
must have their usual length. Proceeding in the familiar way (see e.g. [3, p. 270])
we define

Sw)=L(f,a,%x) (a<x<b),

and calculate that

(2)

%ES@+hM—SwH=VT¥B@ﬁE{Lﬁﬁ%x+M},

L(f,x, x+h)

where ¥ < & < x + k and fis a linear function such that f(x) = f(x) and f (x + A)=
f (x + k). It follows immediately from the next lemma and Ax. 4 that for fixed x the
limit of the expression {-} in (2) is 1 as 4 tends to 0, thus establishing that

S =) 1+ [ ()2,
which in turn implies (1). Q.E.D.

Lemma. Assume Axioms 1-5; let f € C}(R) be convex on [a, b], let P be (a, f(a)),
R be (b, f(b)) and let Q be the point of intersection of the tangent lines to the curve
y = f(») at P and at R. Then L(f, a, b) < PQ + QR (the sum of two distances).

Proof. By convexity there exists a unique point Q' nearest to Q on the arc of
the curve y = f(x) (@ < x < b). Clearly by Axiom 1 we may assume that Q is directly
below Q' (= say (c, d)). By Axiom 5, we see that L(f, a,c) < PQ and L(f,¢,b) < QR.
Clearly Axiom 2 completes the proof of the Lemma.

J. Myecielski has remarked that more advanced techniques will probably allow
one to apply the axiom to a wider class of functions.

Walter Taylor, University of Colorado, Boulder, USA
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The Generating Function for { min (n;, . .., n,) }™

In [1], L. Carlitz has evaluated certain series including

o0

G = 2 {min (n,, ..., n)}m 3. .. azk

n,,...,nk-O
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for £ =3 and m = 2, 3. In this note we evaluate G where & and m are arbitrary positive
integers. The derivation is quite simple once we observe that

min(n,,...,nh) min(n,,...,nk)—l
{min (n,, ..., n)}" = Z' g™ — E' m
i=0 i=0
= X - p)) -
JHiymtty,. .., f+ig=ny fHig+l=my,..., JHig+tl=n,
Thus
o
G= { Z ™ at . X — 2 e
n,,.‘.,nh—o j+1‘,=n!,...,i+ih=nb i+ix+1“”l""’i+‘k+1=”k J
() 00
— ‘m o+ i+14 ‘m oAl +h+1 J+ip+1
= z AT X — 2 i RN+ Sl
i,,...,f'k,f’“o il,...,t.k,i=0

=l=2%...5) (L—x) 1. .. QA=x)1 3 " (x%...%5)
=0
— Ay (%1 X+ %)
(=) e (1= ) (1 — % 25 - 2™

where a,,(y) is the mth Eulerian polynomial (see [2] p. 38).
R. C. Grimson, Elon College, N.C., USA

REFERENCES

(1] L. Carrirz, TheGenerating Function for max (n,, . . . , ni), Portugal. math. 27, 201-207 (1962),
[2] J. RiorDAN, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

Aufgaben

Aufgabe 693. Es seien A ein offenes Intervall der reellen Zahlengeraden und
f, g zwei auf A definierte differenzierbare reellwertige Funktionen mit f(x) + 4 1,
f(x) %= 0, g(») = O fiir alle x in 4. Man zeige, dass die durch

F(x) =171 log | g(x) | [x€4]

definierte Funktion F differenzierbar ist und bestimme die erste Ableitung von F.
R. Rose, Biel

Losung: Es ist

F(x) _Inle@ | [xed].

In | f(x) |

Hier sind nach Voraussetzung und der Kettenregel Zédhler- und Nennerfunktion fiir
alle x € 4 differenzierbar, und es gilt z. B.

(ngx) = gg((:))

wenn g(x) > 0
(In | g(x) )" =

(In (- g(x)))'= :Z'(S) = g'(g) wenn g(x) < 0.
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