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66 D. P. Sumner: A Criterion for #-Fold Transitivity of Transformation Groups

Hence Gy # G, Gy0p + Gy It is also clear that (G o, £ — {0}, *) is transitive, for if
% = 0and y * 0, then

y O] ., _
MR

Hence by Theorem 3, (G, X, *) is 3-fold transitive. We note that (G, X, *) is not
4-fold transitive, for then (G, o), £ — {0}, *) would be 2-fold transitive.

David P. Sumner, University of South Carolina, USA
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On 1-Factorability and Edge-Colorability
of Cartesian Products of Graphs

There is no characterization of 1-factorable graphs. Thus, it is natural that many
of the results on this topic have been the determination of classes of 1-factorable
graphs. The object of this paper is to present a sufficient condition for the 1-factor-
ability of the cartesian product of two graphs. We begin with some notation and
definitions.

The vertex set of a graph G will be denoted by V(G) and its edge set by E(G).
In this paper we consider only finite, undirected graphs without loops or multiple
edges. Let G and H be two nonempty graphs for which V(G) = V(H) and
E(G) N E(H) = @; then the graph G' is the sum of G and H, written G' = G + H, if
V(G')=V(G) and E(G") = E(G) y E(H). A 1-factor of a graph G is a spanning 1-regular
subgraph of G. A graph is 1-factorable if it can be expressed as a sum of edge-disjoint
1-factors. The cartesian product (or product) of the graph G with the graph H, denoted
by G x H,isdefinedby: V (GX H)=V(G)x V(H); E (Gx H) ={[(t4,vy), (g, v5)] | 6y =
ug and v,v, € E(H), or vy = v, and u,u, € E(G)}.

An assignment of % colors to the edges of a nonempty graph G so that adjacent
edges are colored differently is an n-edge-coloring of G. The minimum #» for which a
graph G is n-edge-colorable is its edge-chromatic number y,(G). By a theorem of Vizing
[2], the edge-chromatic number #,(G) of a graph G is bounded by: 4(G) < 5,(G) <
A4(G) + 1, where 4(G) is the maximum degree of G. If G is regular, then G is 1-factor-
able if and only if y,(G) = 4(G). Hence any theorem concerning the 1-factorability of
regular graphs has as an immediate corollary a result concerning edge-colorability,
which is useful since there is also no characterization of those graphs which are
A4(G)-edge-colorable. For other notations and definitions, we follow [1].

If K, denotes the complete graph on two vertices, then Ky X H, where H is any
regular graph, is shown to be 1-factorable in the following lemma.
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Lemma: If H is a regular graph, then K, X H is 1-factorable,

Proof. If H is 1-factorable, then the result follows immediately. Hence we consider
the case that H is not 1-factorable. If H is an r-regular graph, then by a previous
remark, y,(H) = 7+41. Let an (r+1)-edge-coloring of H be given and let
Cy, Cy, ..., Cryq be the edge-color classes of E(H). Now K, X H contains two disjoint
copies of H. Let the (» + 1)-edge-coloring of H be applied to these disjoint copies,
and assign to each edge [(%,, v), (%5, v)] of Ky X H the only color among the » + 1
colors which was assigned to no edge of H incident with v. Hence K, X H may be
(r + 1)-edge-colored. But K, X H is (r + 1)-regular. Hence y, (K, X H) =7+ 1, and
K, x H is 1-factorable.

We now state and prove the main result.

Theorem: If G is a 1-factorable graph and H is a regular graph, then G x H is
a 1-factorable graph.

Proof: Let G be a 1-factorable, r-regular graph of order p, with 1-factors
Gy, Gy, . .., G, and let H be an s- regular graph of order p,. Then consider the sub-

graphs G, ><H G, Xsz, veny X sz of G X H, where Kpg denotes the graph consist-
ing of p, isolated vertlces Note that these subgraphs are mutually edge-disjoint

4 —
subgraphs spanning G X H, and G X H = G; X H + Y G, X Kj,. Moreover, the
i=2

subgraphs G, X k—pz, ceey G X I?p, are 1-regular and thus are 1-factors of G X H.
Hence if G, X H is 1-factorable, G X H is 1-factorable. Now G; X H is a spanning
(s + 1)-regular subgraph of G X H consisting of $,/2 components each of which is
isomorphic to K, X H. By the Lemma, K, X H is 1-factorable and of regularity s + 1,
Let the 1-factorsof K, X Hbe F,, E, ..., F,,; in a 1-factorization of K, X H. Select
in every component of G, x H, the same 1-factor F,, where 1 < 2 < s+ 1, and
designate the resultant subgraph of G, X H by F;. Then by the choice of F; it follows
that F; is a spanning 1-regular subgraph of G, X H, and hence a 1-factor of G, X H.
In a like manner mutually edge-disjoint 1-factors Iy, Fy,. .., F',, of Gy X H can be
obtained from each of F, F, ..., F,,,, respectively. Therefore G, X H is 1-factorable,
which implies that G x H is also 1-factorable as previously indicated.

Corollary: 1f G and H are regular graphs, and y,(G) = 4(G), then y, (G X H) =
A(G) + A(H).

We remark that the theorem gives a sufficient condition for 1-factorability
which is, however, not a necessary condition, since 1-factorable products of two
non-1-factorable graphs are known. An example of this is the cartesian product of
the Petersen graph with a triangle.

P. E. Himelwright and J. E. Williamson,
Grand Valley State College, and Southern Illinois University, USA
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