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A Ceriterion for n-Fold Transitivity of Transformation Groups

Let G be a group and let X be a nonempty set. An action * on X is a function *:
G X X — X such that for every g,he Gand x € X, (2) (gh) * x = g * (h * x) and (i2)
1*x=ux.

A triple (G, X, *) where * is an action of G on X is called a transformation group.
For S C X the stability subgroup of Sis Gs={ge G |g*s =s for every s € S}. (We
will write G, instead of Gy,;.)

If » is a positive integer, we say that G is n-fold transitive whenever for every
two sequences x4, %5, . . . , %, and ¥, ¥, . . . , ¥, €ach consisting of » distinct elements
of X, there exists g € G such that g *x, =y, forevery ; =1,2,..., n.

We note that if * is an action of G on X, then for any SC X, * induces an action
of Ggon X — S.

The next theorem is well known (see, for example, [1], Theorem 9.1).

Theorem 1: Let (G, X, *) be transitive. Then for n > 2, (G, X, *) is n-fold
transitive iff there exists an x € X such that (G,, X — {x}, *) is (n — 1)-fold transitive.

It is our purpose in this note to derive a corollary (Theorem 2) of this theorem
which is sometimes more convenient to use. The essential idea is to replace the
transitive condition on (G, X, *) by a restriction on the stability subgroups.

Lemma1: If (G, X, *) isa transformation group, then (G, X, *) is 2-fold transitive
iff there exists an x € X such that G, * G and (G,, X — {x}, *) is transitive.

Pyoof: Clearly if (G, X, *) is 2-fold transitive then the given condition holds for
any x € X.

Now suppose x € X such that G, + G and (G,, X — {x}, *) is transitive. Let
y,2€ X. If y, 2€ X — {x}, then there exists g€ G, suchthat g*y =2 If y = 2=,
then 1 *y = 2. If y = x and z =+ x, then since G, + G, there exists 4 € G such that
h*x + x. Sothereisanre G,such that7* (h*x) =zand so (vh) *x =2z If y + x,
2z = x and A is as before, then there exists £ € G, such that i * y = 4 * x = h * z so that
(h—1t) *y = z. Hence (G, X, *) is transitive so that by Theorem 1 it is 2-fold transitive.

Lemma 2: Let # > 2 and | X | > 1. Then (G, X, *) is n-fold transitive iff there
exists an x € X such that G, + G and (G,, X — {x}, *) is (» — 1)-fold transitive.
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Proof: Assume G, + G and (G,, X — {x}, *) is (» — 1)-fold transitive. Then by
Lemma 1, (G, X, *) is transitive and hence by Theorem 1 it is n-fold transitive. If
(G, X, *) is n-fold transitive, then the given condition holds for all ¥ € X.

Theorem 2: For | X | > »n > 2, (G, X, *) is n-fold transitive iff there exists
SC X with S={#,%,,...,t,—y}suchthatif Sy ={t,, %, ... 4} foreachk=1,2,...,
n — 1, then

a) G, + Gand G5, * G, forallk=1,2,...,2—1; and
b) (Gs, X — S, *) is transitive.

Proof: Since any #u-fold transformation group clearly satisfies (a) and (b), we
need only show the other half.

The case n = 2 is the content of Lemma 1.

Suppose the theorem holds for all integers greater than one and less than .
Let SC X be S={t,t,,...,t,_,}such that Conditions (a) and (b) hold. Then S* =
{t5, ..., t,_,} satisfies the conditions of the theorem for the transformation group
(G;, X — {t,}, *) and hence this transformation group is (» — 1)-fold transitive. But
then by Lemma 2, (G, X, *) is n-fold transitive.

We next consider an application of this result. Let % be a field and let G be the
group GL (k, 2) of all nonsingular 2 X 2 matrices over k. Let * be the action of G
on k£ U {oo} defined by

;z:;sﬂ' if 24 00, yz+ 06 # 0
[oc ﬂ] *x,— ] o0, if 2% 00, y24+6=0
y afy , ifz=00,y %0

00, fz=o00,y=0.

We will apply the previous result to show that (G, X, *) is 3-fold transitive. First
we note the following special case of Theorem 2 obtained by letting n = 3.

Theorem 3: For | X | = 3, (G, X, *) is 3-fold transitive iff there exist x,ye X
such that G, + G, G, ,, + G, and (G, ,;, X —{x, ¥}, *) is transitive.
Note that G, ,, = G, 0 G,. It is easy to see that

== 1[5 <]
a1 o]

a 0
G{O,oo}= Go N Go = {[0 c]

a,b,cek,ac#o}

and

a,b,cek,ac#O{.

So

a,cek,ac#O}.
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Hence Gy # G, Gy0p + Gy It is also clear that (G o, £ — {0}, *) is transitive, for if
% = 0and y * 0, then

y O] ., _
MR

Hence by Theorem 3, (G, X, *) is 3-fold transitive. We note that (G, X, *) is not
4-fold transitive, for then (G, o), £ — {0}, *) would be 2-fold transitive.

David P. Sumner, University of South Carolina, USA

Acknowledgement

I would like to thank D. J. Foulis and L. N. Mann for conducting the seminar on
transformation groups during which this note was first written.

REFERENCE

[1] H. WieLANDT, Finite Permutation Groups, trans. by R. Bercov, Academic Press, New York,
1964.

On 1-Factorability and Edge-Colorability
of Cartesian Products of Graphs

There is no characterization of 1-factorable graphs. Thus, it is natural that many
of the results on this topic have been the determination of classes of 1-factorable
graphs. The object of this paper is to present a sufficient condition for the 1-factor-
ability of the cartesian product of two graphs. We begin with some notation and
definitions.

The vertex set of a graph G will be denoted by V(G) and its edge set by E(G).
In this paper we consider only finite, undirected graphs without loops or multiple
edges. Let G and H be two nonempty graphs for which V(G) = V(H) and
E(G) N E(H) = @; then the graph G' is the sum of G and H, written G' = G + H, if
V(G')=V(G) and E(G") = E(G) y E(H). A 1-factor of a graph G is a spanning 1-regular
subgraph of G. A graph is 1-factorable if it can be expressed as a sum of edge-disjoint
1-factors. The cartesian product (or product) of the graph G with the graph H, denoted
by G x H,isdefinedby: V (GX H)=V(G)x V(H); E (Gx H) ={[(t4,vy), (g, v5)] | 6y =
ug and v,v, € E(H), or vy = v, and u,u, € E(G)}.

An assignment of % colors to the edges of a nonempty graph G so that adjacent
edges are colored differently is an n-edge-coloring of G. The minimum #» for which a
graph G is n-edge-colorable is its edge-chromatic number y,(G). By a theorem of Vizing
[2], the edge-chromatic number #,(G) of a graph G is bounded by: 4(G) < 5,(G) <
A4(G) + 1, where 4(G) is the maximum degree of G. If G is regular, then G is 1-factor-
able if and only if y,(G) = 4(G). Hence any theorem concerning the 1-factorability of
regular graphs has as an immediate corollary a result concerning edge-colorability,
which is useful since there is also no characterization of those graphs which are
A4(G)-edge-colorable. For other notations and definitions, we follow [1].

If K, denotes the complete graph on two vertices, then Ky X H, where H is any
regular graph, is shown to be 1-factorable in the following lemma.
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