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im Intervall (0, ) streng konkav ist. Wir unterscheiden nun folgende Moglichkeiten:
2a.a=bund 63°1' < a < 90°.

Wir zeigen, dass in diesem Fall s¢ + sg > 3 & ist, was wie oben einen Wider-
spruch ergibt. Sei A(a) = 4a + ¢ <s¢+ sp. h(a) = 4 g(a) + g(20) ist konkav, wir
haben daher nur die Randwerte zu iiberpriifen: #(90°) = 8¢ > 3 7, und 4(63°1') > 3 n
(es geniigt klarerweise, dies fiir » = 3 7/8 nachzurechnen).
2b.a > bund 63°1’ < o < 90°

Wir bewegen A auf dem Umbkreis auf B zu, bis & = a ist. Da # > », nimmt dabei
(wegen der Konkavitit von g) b = g(f) weniger zu als ¢ = g(y) ab, also wird b + ¢
kleiner, und es folgt nach 2a): s+ s¢=>3a+ b+ ¢ > 3.

2¢.60° <o < 63°1".
Wenn wir 4 wie im Fall 2b) bewegen, wird b + ¢ kleiner. Anschliessend be-
wegen wir 4 und B mit gleicher Geschwindigkeit zueinander, solange bis o = f§

= 63°1’ ist. Dabei wird b + ¢ = g(«) + g(2«) nochmals kleiner, wie eine einfache
Rechnung zeigt. Es folgt:

3 3
b+ ¢ > g(63°1") + g(106°2') =: v(r). Nuniste < 7 b+c),f< 27 (@ + ¢)

2 2
3 3 3
<—2’1— ® + o), dg——;—t———(a—{—b)g—;—— (b +c), und daher 4, ¢ und
3xn . 3xn
< - v(r). v(r) ist monoton wachsend, also folgt wegen v <> 207,5°:
. 3n 3n
d, e und fsind < - = v ——8-) < 62,5°.

Der Durchschnitt der drei Kreise mit Radius » > 3 #/8 und Mittelpunkten 4,

B, C besteht nur aus dem Punkt M. Verkleinert man den Radius auf 62,5°, so wird

der Durchschnitt leer. Da d, e und f < 62,5° sind, wire jedoch D ein Element dieses
Durchschnitts. Damit ist der Satz bewiesen.

Johann Linhart, Universitdt Salzburg
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Mittelpunktspolyeder im E*

1. Es sei P4 die Menge der eigentlichen Polyeder (Polytope) des vierdimensiona-
len euklidischen Raumes E%. Mit S§* bezeichnen wir die Menge aller konvexen vier-
dimensionalen Mittelpunktspolyeder im engeren Sinne — das sind zentralsymmetrische
Polyeder, deren simtliche dreidimensionale Seitenfldchen ebenfalls zentralsymmetrisch
sind [1]. Zwei Polyeder A und B aus P4 heissen translativ zerlegungsgleich (4 ~ B),
wenn sie sich in endlich viele paarweise translationsgleiche Teilpolyeder zerlegen
lassen. Ist W ein fester vierdimensionaler Wiirfel der Kantenldnge 1, so bezeichnen
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wir mit W* die Menge aller Polyeder A mit 4 ~ AW, wobei AW der aus W durch
Dilatation mit 2 > 0 hervorgegangene Wiirfel ist. Es ist bekannt [1], dass W* < §4
gilt. Durch Ubertragung eines Ergebnisses von H. Hadwiger [2] fiir den E3 wollen
wir zeigen, dass auch die Umkehrung §* < W4 richtig ist. Genauer gilt der folgende

Satz. Ein konvexes vierdimensionales Polyeder ist genau dann mit einem vier-
dimensionalen Wiirfel translativ zerlegungsgleich, wenn es ein Mittelpunktspolyeder
im engeren Sinne ist (§* = W4).

2. Wir stellen zunichst einige Begriffe und Hilfsaussagen fiir den Beweis dieses
Satzes zusammen (vgl. [3]).

Hilfssatz 1. Die translative Zerlegungsgleichheit ~ ist eine Aquivalenzrelation
iiber P4

Hilfssatz 2. Es gilt der folgende Additionssatz

AINBlundA2~Bz$ A1+ AzNB1+ Bz
und der Subtraktionssatz

A1+A2NBI+ BzundAlNBI:Azf\’Bz.

Die elementargeometrischen Additionen 4 + B von Polyedern sollen stets ausfiithrbar
sein, was durch eventuelle Translationen der beteiligten Polyeder immer erreichbar
ist.

Ferner betrachten wir folgende Abbildungen F, von P% in die reellen Zahlen

(translationsinvariante und einfach additive Polyederfunktionale — vgl. etwa [4]

bzw. [6]).
F(4) = 4 Va(4),

wobei V, das (vierdimensionale) Volumen bedeutet.
B(4) = 4 Vald; u) — V3 (4; — u),

wobei (4; #) das System der dreidimensionalen Seitenflichen von 4 mit dem ins
Aussere von 4 weisenden Normalenvektor u darstellt und V,(4; ) der (dreidimen-
sionale) Inhalt dieses Systems ist.

B(A) = 4 Va(A;u,0) = Vo (A; 0, —0) + Vo (45 —u, —0) = V3 (45—, v),

dabeiist (4; #, v) das System der zweidimensionalen Seitenflichen von (4; ») mit
dem ins «Aussere» von (4; #) weisenden Normalenvektor v (orthogonal #) und ¥,
der zweidimensionale Inhalt. Entsprechend ist das letzte Funktional zu verstehen:

F(A4) = 4 Vi(4; u,v,w) — V; (4; 4,9, — w)
+VA4iu,—v,—w)—V, (4;u, — v, w)
+ V(4 —u,v,—w)—V,(4; —u,v, w)
+ V4 —u—v,w)—V,(4;—u,—v,—w).

Dann gilt der folgende
Hilfssatz3. A~ B= E(A) = F(B) (i=1,2,3,4).
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Beziiglich der Dilatation g 4 mit rationalem g > 0 gilt der

Hilfssatz 4. Die Funktionale F, sind rational-homogen vom Grade z, d.h.
Fled)=¢ F(4) (=1,23,4).

3. Ein Polyeder A aus P4 heisst ¢-stufiger Zylinder, wenn 4 = B, X -+« X B, die
1-fache Minkowskische Summe von konvexen Polyedern B;, . . ., B, ist, die in Unter-
rdumen E*, ..., E¥;liegen, welche sich paarweise in allgemeiner Lage befinden und

fiir deren Dimensionen %; gilt: 2, = 1 und } k; = 4. Die Menge aller Polyeder C, die
1

mit einer endlichen Summe von ¢-stufigen Zylindern translativ zerlegungsgleich sind,
wird als i-te Zylinderklasse Z; bezeichnet. Fiir diese Polyeder gilt der folgende

Hilfssatz5. C e Z;= F(C) =0 fiir ¢ <j.

(Vgl. [3], S. 55). Dabei soll F,(C) = 0 das identische Verschwinden des Funktionals F,
fir alle Seitenflichennormalen # bzw. orthonormierten Richtungszweibeine (x, v)
bzw. Richtungsdreibeine (u, v, w) andeuten.

Die entscheidende Rolle in unserem Beweis spielt der

Hilfssatz 6. Ist C aus Z; und #» eine natiirliche Zahl, so gibt es ein Polyeder C,
aus Z; , mit nC ~nio C+ C, (firi =4 ist Cy = ).
(Vgl. [3], S. 29). Dabei bedeutet m o C die ganze Vervielfachung von C in folgendem
Sinne:

mo C=C,+ .-+ C, und C, translationsgleich C (¢t =1, ..., m).
Beziiglich der Operationen der Dilatation und der ganzen Vervielfachung stellen wir
einige Eigenschaften zusammen in dem

Hilfssatz 7. A(A X B)=A44 X AB,
A4 + B)=14 + AB,
mo(A+ B)y~moAd+mo B,
A~B<>moA~mo B.
Schliesslich sind die geraden Prismen Z als spezielle Zstufige Zylinder von
besonderem Interesse. Ein gerades Prisma Z = P’ X A wollen wir darstellen durch

Z = (P', h), wo P’ ein (eigentliches) Polyeder einer dreidimensionalen Hyperebene E3
und 4 eine zu E3 total orthogonale Strecke ist. Dann gilt folgender

Hilfssatz 8. F(P',h) = h-E _(P') firi=23,4.
(Vgl. auch [4]). Dabei haben wir mit 4 zugleich die Linge (reelle Zahl) der Strecke 4
bezeichnet, und F,’ ist ein fiir die dreidimensionalen Polyeder P’ in E? analog den F,
zu erkldrendes Funktional.

Unsere Beweisvorbereitungen werden abgeschlossen durch den

Hilfssatz 9. Ist Z = (P’, A h) ein gerades Prisma und A eine positive reelle Zahl,
so gibt es zwei Polyeder X und Y aus Z; mit

(P AR+ X ~(AP, B+ Y.

Diese Aussage ist in einem kiirzlich von Jessen formulierten Satz erithalten ([7], S. 51).
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4. Nun beweisen wir den eingangs formulierten Satz. Zunichst ist klar, dass
jeder Wiirfel ein Mittelpunktspolyeder im engeren Sinne ist bzw. W4 < 84 Es sei
umgekehrt M ein beliebiges konvexes vierdimensionales Mittelpunktspolyeder im
engeren Sinne. Dann besitzt M paarweise translationsgleiche Seitenflichen (M; u)
und (M; — u) [1], woraus zunichst

F(M)=0 fir 1=1,23 (1)

folgt. Nun fixieren wir eine Hyperebene E} mit dem Normalenvektor u,so, dass M
ganz im Inneren des durch #, bestimmten Halbraumes liegt. Die 2 # Seitenflichen
(M; u;) von M seien so durchnumeriert, dass u; u, > 0 fiiri =1, 2, ..., ngilt. Dann
ldsst sich M darstellen durch

ZT M+ZT;1+N (2)

=1
wobei T; eine « Projektionssdule» ist mit dem in E3 liegenden «Grundflichenpolyeder»
B, welches die orthogonale Projektion des «Deckflichenpolyeders» (M ; u,) darstellt.
Bei geeigneter Numerierung (P, translationsgleich P, ,; fiir =1, ..., n) lassen sich
unter unseren Voraussetzungen die Differenzen T, — T, ,; = (P, 4;) bilden (:=1, ...,
n), so dass (2) iibergeht in

M~ ().
Hilfssatz 7 liefert
2M ~ 2 (2P, 2h,) (3)

Hilfssatz 6 iibertragen auf den dreidimensionalen Fall (P, = E} ), liefert
2P,~20P,+ Z,, (4)

wo Z, ein Polyeder aus Z; (zweite Zylinderklasse bzgl. E3 ) ist. Beriicksichtigen wir,
dass die Zentralsymmetrie von (M; ;) bei der Orthogonalprojektion auf E3_erhalten
bleibt, so erhellt, dass P, zentralsymmetrisch ist und mithin

E((P)=0 (5)

gilt. Da auch Hilfssatz 3 sinngemdss fiir den dreidimensionalen Fall gilt (vgl. [5])¢
folgt aus (4)

F(2P)=F (20P)+ E(Z),

mit (5) also F;(Z,) = 0. Daraus und aus Z; € Z, ergibt sich ([5], S. 203) Z, ~ W/,
wo W, ein geeigneter in E} liegender Wiirfel ist. (3) und (4) liefern also insgesamt

2M ~)' (20 P+ W/, 2h), 1
2M ~}(20 P, 2k) + ] W/, 2h),

2M ~220 3 (P, b) + 3] W, 2h) bzw.

2M ~220 M + W} mit Wte Z,.

- (6)
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Nach Hilfssatz 9 gilt ferner
(P bi) + X; ~ (P, ) + Y,

wo & eine fest gegebene positive reelle Zahl (Strecke) ist, P, = (k;/h) - P; und X,
Y, € Z, gilt. Daraus folgt

SR+ XX~ B N+IY, bow. M+ X~@B+Y.  (7)

Dabeiist X, Y € Z, und (Q, &) ein gerades Prisma mit der Grundfliche Q =X P < E3 ,
Unter Beachtung von (5) ergibt sich noch F, (P) = F/(P/) = 0 bzw.

E(Q) =0. (8)
Ferner folgt aus (7)

5(M) + LX) = E(Q, ) + E(Y)

und daraus mit (1) und Hilfssatz 5 F,(Q, #) = 0, nach Hilfssatz 8 also 4 - F (Q) =0
bzw. F/(Q) = 0. Zusammen mit (8) schliessen wir daraus wie oben auf die Existenz
eines geeigneten Elementes W} aus Z, mit (Q, ) ~ W,}. Es gilt also statt (7) sogar

M+X~W+Y. )
Daraus folgt unter Beriicksichtigung von Hilfssatz 6 und 7

2M+2X ~2W +2Y bzw.

M4+ 20X+ U ~280Wt+20Y+U, (U,Uy,€eZ,), v
andererseits folgt aus (9) aber

BoM+BoX~2BoW+280Y,
so dass sich mit Hilfssatz 1 und 2 aus (10) ergibt:

2M 4+ 280X+ U, + 20 W+ 2B80Y ~200 W +2B80Y +Uy+220M+ 250X
bzw.

2M+ U, ~280M+ 280 Wyt + U,.
Da es sicher ein W} aus Z, gibt mit

Wi+ Uy ~280W+U,,
gilt sogar

2M ~20M+ W. (11)
Vergleichen wir diese Beziehung mit (6), so ergibt sich

BoM+Wh~20M+ W bzw. 220M4+ W ~W.

Wegen Wi, Wi € Z, und Fy(W#) > F,(W;') gibt es aber sicher einen vierdimensionalen
Wiirfel AW mit W + 220 AW ~ W, so dass 220 M ~ 220 AW, nach Hilfssatz 7
also M ~ AW gilt, womit §* = W4, insgesamt also §* = W* bewiesen ist.

. Eike Hertel, Friedrich-Schiller-Universitit, Jena, DDR
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A Ceriterion for n-Fold Transitivity of Transformation Groups

Let G be a group and let X be a nonempty set. An action * on X is a function *:
G X X — X such that for every g,he Gand x € X, (2) (gh) * x = g * (h * x) and (i2)
1*x=ux.

A triple (G, X, *) where * is an action of G on X is called a transformation group.
For S C X the stability subgroup of Sis Gs={ge G |g*s =s for every s € S}. (We
will write G, instead of Gy,;.)

If » is a positive integer, we say that G is n-fold transitive whenever for every
two sequences x4, %5, . . . , %, and ¥, ¥, . . . , ¥, €ach consisting of » distinct elements
of X, there exists g € G such that g *x, =y, forevery ; =1,2,..., n.

We note that if * is an action of G on X, then for any SC X, * induces an action
of Ggon X — S.

The next theorem is well known (see, for example, [1], Theorem 9.1).

Theorem 1: Let (G, X, *) be transitive. Then for n > 2, (G, X, *) is n-fold
transitive iff there exists an x € X such that (G,, X — {x}, *) is (n — 1)-fold transitive.

It is our purpose in this note to derive a corollary (Theorem 2) of this theorem
which is sometimes more convenient to use. The essential idea is to replace the
transitive condition on (G, X, *) by a restriction on the stability subgroups.

Lemma1: If (G, X, *) isa transformation group, then (G, X, *) is 2-fold transitive
iff there exists an x € X such that G, * G and (G,, X — {x}, *) is transitive.

Pyoof: Clearly if (G, X, *) is 2-fold transitive then the given condition holds for
any x € X.

Now suppose x € X such that G, + G and (G,, X — {x}, *) is transitive. Let
y,2€ X. If y, 2€ X — {x}, then there exists g€ G, suchthat g*y =2 If y = 2=,
then 1 *y = 2. If y = x and z =+ x, then since G, + G, there exists 4 € G such that
h*x + x. Sothereisanre G,such that7* (h*x) =zand so (vh) *x =2z If y + x,
2z = x and A is as before, then there exists £ € G, such that i * y = 4 * x = h * z so that
(h—1t) *y = z. Hence (G, X, *) is transitive so that by Theorem 1 it is 2-fold transitive.

Lemma 2: Let # > 2 and | X | > 1. Then (G, X, *) is n-fold transitive iff there
exists an x € X such that G, + G and (G,, X — {x}, *) is (» — 1)-fold transitive.
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