
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 29 (1974)

Heft: 3

Artikel: Mittelpunktspolyeder im E4

Autor: Hertel, Eike

DOI: https://doi.org/10.5169/seals-29895

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-29895
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


J. Linhart: Eine extremale Verteilung von Grosskreisen 59

im Intervall (0, n) streng konkav ist. Wir unterscheiden nun folgende Möglichkeiten:
2 a. a b und 63°1' < a < 90°.

Wir zeigen, dass in diesem Fall sc + s__ > 3 n ist, was wie oben einen Widerspruch

ergibt. Sei h(a) 4a + c < sc?-f sB. h((x) 4 g(<x) -f g(2a) ist konkav, wir
haben daher nur die Randwerte zu überprüfen: &(90°) Sr > 3 Tt, und A(63°l') > 3 n
(es genügt klarerweise, dies für r 3 n/S nachzurechnen).

2b. a > b und 63°1' < oc < 90°

Wir bewegen A auf dem Umkreis auf B zu, bis b a ist. Da ß > y, nimmt dabei
(wegen der Konkavität von g) b g(ß) weniger zu als c g(y) ab, also wird b -f c

kleiner, und es folgt nach 2a): sB H~ sc > 3a -f b -f c > 3 Tt.

2c. 60° < oc < 63°1'.

Wenn wir A wie im Fall 2 b) bewegen, wird b -f- c kleiner. Anschliessend
bewegen wir A und B mit gleicher Geschwindigkeit zueinander, solange bis a ß

63°r ist. Dabei wird b + c — g(oc) + g(2 a) nochmals kleiner, wie eine einfache
Rechnung zeigt. Es folgt:

b + c > g(63°l') + g(106°2') =: v(r). Nun ist e < -^ - (6 + c), f < -^ - (a + c)

3 Tt 3 Tt 3 Tt
< — (b + c), d < — (« + &)< — (b 4- c), und daher d, ^ und

3^ / 3tc \f < — v(r). v(r) ist monoton wachsend, also folgt wegen v I—— I > 207,5°:

3n l 3tz \
d, e und / sind < — v I -^-I < 62,5°.

Der Durchschnitt der drei Kreise mit Radius r > 3 tt/8 und Mittelpunkten A,
B, C besteht nur aus dem Punkt M. Verkleinert man den Radius auf 62,5°, so wird
der Durchschnitt leer. Da d, e und / < 62,5° sind, wäre jedoch D ein Element dieses
Durchschnitts. Damit ist der Satz bewiesen.

Johann Linhart, Universität Salzburg
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Mittelpunktspolyeder im E4

1. Es sei P4 die Menge der eigentlichen Polyeder (Polytope) des vierdimensionalen

eukhdischen Raumes E*. Mit S4 bezeichnen wir die Menge aller konvexen
vierdimensionalen Mittelpunktspolyeder im engeren Sinne - das sind zentralsymmetrische
Polyeder, deren sämtliche dreidimensionale Seitenflächen ebenfalls zentralsymmetrisch
sind [1]. Zwei Polyeder A und B aus P4 heissen translativ zerlegungsgleich (A ~ B),
wenn sie sich in endlich viele paarweise translationsgleiche Teilpolyeder zerlegen
lassen. Ist W ein fester vierdimensionaler Würfel der Kantenlänge 1, so bezeichnen
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wir mit PF4 die Menge aller Polyeder A mit A ~ XW, wobei XW der aus W durch
Dilatation mit X > 0 hervorgegangene Würfel ist. Es ist bekannt [1], dass FF4 <= 54

gilt. Durch Übertragung eines Ergebnisses von H. Hadwiger [2] für den Ez wollen
wir zeigen, dass auch die Umkehrung SA <= W* richtig ist. Genauer gilt der folgende

Satz. Ein konvexes vierdimensionales Polyeder ist genau dann mit einem
vierdimensionalen Würfel translativ zerlegungsgleich, wenn es ein Mittelpunktspolyeder
im engeren Sinne ist (S4 W4).

2. Wir stellen zunächst einige Begriffe und Hilfsaussagen für den Beweis dieses
Satzes zusammen (vgl. [3]).

Hilfssatz 1. Die translative Zerlegungsgleichheit ^ ist eine Äquivalenzrelation
über P4.

Hilfssatz 2. Es gilt der folgende Additionssatz

At ~ Bt und A2 ~ B2 => Ax + A2 ~ Bx + B2

und der Subtraktionssatz

Ax -f- _42 ~ Bt -f B2 und Ax ~ Bx => A2 ~ B2.

Die elementargeometrischen Additionen A + B von Polyedern sollen stets ausführbar
sein, was durch eventuelle Translationen der beteiligten Polyeder immer erreichbar
ist.

Ferner betrachten wir folgende Abbildungen Ft von P4 in die reellen Zahlen
(translationsinvariante und einfach additive Polyederfunktionale - vgl. etwa [4]
bzw. [6]).

wobei F4 das (vierdimensionale) Volumen bedeutet.

Fs(A) dfVa(A;u)-V3(A;-u),
wobei (A; u) das System der dreidimensionalen Seitenflächen von A mit dem ins
Äussere von A weisenden Normalenvektor u darstellt und VZ(A; u) der (dreidimensionale)

Inhalt dieses Systems ist.

F2(A) « df V2(A; u, v) - V2 (A; u, - v) + V2 (A; - u, - v) - V2 (A; -u,v),
dabeiist (A; u, v) das System der zweidimensionalen Seitenflächen von (^4; u) mit
dem ins «Äussere» von (A; u) weisenden Normalenvektor v (orthogonal u) und V2

der zweidimensionale Inhalt. Entsprechend ist das letzte Funktional zu verstehen:

FX(A) df Vt(A; u, v, w) - V1 (A; u, v, ~ w)

-f- Vt (A; u, — v, — w) — Vx (A; u, — v, w)

4- Vt (A; — u, v, — w) — Vt (A; — u, v, w)

+ Vx (A; -u,-~v,w)-~ Vt (A; - u, - v, - w)

Dann gilt der folgende

Hilfssatz3,A~B*> Ff(A) F4(B) (i 1, 2, 3, 4).
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Bezuglich der Dilatation qA mit rationalem o > 0 gilt der

Hilfssatz 4. Die Funktionale Ft smd rational-homogen vom Grade i, d.h.

Ft(QA) Q>Ft(A) 1,2,3,4).
3 Em Polyeder A aus P4 heisst .-stufiger Zylinder, wenn A Bx X • • • X B{ die

* -fache Minkowskische Summe von konvexen Polyedern Blt B% ist, die in Unter-
raumen Eh, Ekx liegen, welche sich paarweise m allgemeiner Lage befinden und

*

fur deren Dimensionen Aj gilt & 2_i 1 und 27 /ttj 4. Die Menge aller Polyeder C, die
i

mit einer endlichen Summe von .-stufigen Zylindern translativ zerlegungsgleich sind,
wird als .-te Zylmderklasse Zt bezeichnet. Fur diese Polyeder gilt der folgende

Hilfssatz 5 C e Zj=> Ft(C) =0 fur < 7.

(Vgl [3], S 55). Dabei soll Ft(C) 0 das identische Verschwinden des Funktionais F{
fur alle Seitenflachennormalen u bzw. orthonormierten Richtungszweibeine (u, v)
bzw Richtungsdreibeine (u, v, w) andeuten.

Die entscheidende Rolle in unserem Beweis spielt der

Hilfssatz 6. Ist C aus Zt und n eine naturliche Zahl, so gibt es em Polyeder C0

aus Zl+1 mit nC ~ nl o C + CQ (fur 4 ist C0 0).
(Vgl. [3], S. 29) Dabei bedeutet mo C die ganze Vervielfachung von C m folgendem
Sinne:

moC=C1+" 4- Cm und Ct translationsgleich C (1 1, m).
Bezuglich der Operationen der Dilatation und der ganzen Vervielfachung stellen wir
einige Eigenschaften zusammen m dem

Hilfssatz!. X(Ax B)=XAxXB,
X{A 4-£)=A_4 4-A£,

mo(A + B)~moA + moB,
A~B<=>moA~moB.

Schliesslich smd die geraden Prismen Z als spezielle 2stufige Zylinder von
besonderem Interesse. Em gerades Prisma Z P' x h wollen wir darstellen durch
Z (Pf, h), wo P' em (eigentliches) Polyeder emer dreidimensionalen Hyperebene £3
und h eme zu E3 total orthogonale Strecke ist. Dann gilt folgender

Hilfssatz 8. Ft(P', h)=h Ftf_x (F) fur. 2, 3,4.

(Vgl. auch [4]) Dabei haben wir mit h zugleich die Lange (reelle Zahl) der Strecke h
bezeichnet, und F?' ist em fur die dreidimensionalen Polyeder P' in Ez analog den Ft

zu erklärendes Funktional.
Unsere Beweisvorbereitungen werden abgeschlossen durch den

Hilfssatz 9. Ist Z (Pf, X h) em gerades Prisma und X eme positive reelle Zahl,
so gibt es zwei Polyeder X und Y aus Z3 mit

(P',Xh) + X~(XP',h)+ Y.

Diese Aussage ist in emem kurzhch von Jessen formulierten Satz enthalten ([7], S. 51).
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4. Nun beweisen wir den eingangs formulierten Satz. Zunächst ist klar, dass

jeder Würfel ein Mittelpunktspolyeder im engeren Sinne ist bzw. W* cz SK Es sei

umgekehrt M ein beliebiges konvexes vierdimensionales Mittelpunktspolyeder im
engeren Sinne. Dann besitzt M paarweise translationsgleiche Seitenflächen (M; u)
und (M; — u) [1], woraus zunächst

F{(M) 0 für .' 1, 2, 3 (1)

folgt. Nun fixieren wir eine Hyperebene E\o mit dem Normalenvektor uQ so, dass M
ganz im Inneren des durch u0 bestimmten Halbraumes liegt. Die 2 n Seitenflächen
(M; ut) von M seien so durchnumeriert, dass u% uQ > 0 für .' 1, 2,..., n gilt. Dann
lässt sich M darstellen durch

ZT, M + jrTn + l, (2)

wobei Tt eine «Projektionssäule» ist mit dem in E\9 liegenden «Grundflächenpolyeder»
P{, welches die orthogonale Projektion des «Deckflächenpolyeders» (M; ut) darstellt.
Bei geeigneter Numerierung (Pt translationsgleich Pn+t für * 1, n) lassen sich
unter unseren Voraussetzungen die Differenzen Tt — Tn+1 (Pt, ht) bilden (.' 1,..
n), so dass (2) übergeht in

M~£(P{,h,).
i

Hilfssatz 7 liefert

2M~]T(2Pti2ht). (3)
i

Hilfssatz 6 übertragen auf den dreidimensionalen Fall (Pt <= Elo), liefert

2P,~2oPt4-Z,, (4)

wo Z{ ein Polyeder aus Z2 (zweite Zylinderklasse bzgl. Zs^o) ist. Berücksichtigen wir,
dass die Zentralsymmetrie von (M; ut) bei der Orthogonalprojektion auf £J# erhalten
bleibt, so erhellt, dass Pt zentralsymmetrisch ist und mithin

#(*.)= 0 (5)

gut. Da auch Hilfssatz 3 sinngemäss für den dreidimensionalen Fall gilt (vgl. [5])'
folgt aus (4)

F2'(2Pt) F;(2oPt) + F2'(Z(),

mit (5) also F2'(Zt) 0. Daraus und aus Z% e Z2 ergibt sich ([5], S. 203) Zx ^ W%',

wo Wl ein geeigneter in E\% hegender Würfel ist. (3) und (4) liefern also insgesamt

2M~£(2oPi + W%',2ht),

2M~£(2oP*>2hi)+£(Wi>2hi)>
(6)

2 M ~ 2* o£ [P(, h.) + 27 Wt', 2 ä() bzw.

2M~2*oM + Wf mit W*eZt.
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Nach Hilfssatz 9 gut ferner

(p{,h,) + x{~(p;,h) + Y,,

wo h eine fest gegebene positive reelle Zahl (Strecke) ist, JJ' (hjh) • JJ- und Xit
Yt e Z3 gilt. Daraus folgt

27(^*.)+i7^i~27(^*)+27yi bzw- m + x~{q,h) + y. (7)

Dabei ist X,Y eZz und h) ein gerades Prisma mit der Grundfläche Q Z JJ' c £j#.
Unter Beachtung von (5) ergibt sich noch P2'(Pt) F2(Pt') 0 bzw.

3'(0 0 (8)

Ferner folgt aus (7)

F2(M) + F2(X) Fz(Q,h) + F2(Y)

und daraus mit (1) und Hilfssatz 5 F2(Q, h) 0, nach Hilfssatz 8 also h • Ff (Q) 0
bzw. Ff(Q) 0. Zusammen mit (8) schhessen wir daraus wie oben auf die Existenz
eines geeigneten Elementes W£ aus Z4 mit (Q, h) ^ PF24. Es gilt also statt (7) sogar

i + i-^4 + y. (9)

Daraus folgt unter Berücksichtigung von Hüfssatz 6 und 7

2M + 2X ~2W* + 2Y bzw. 1

(10)

2I+23oI+ Ux~ 24o TF244-23oY + Ut (C^, 17, 6 ZJ J

andererseits folgt aus (9) aber

28oilf+23oI-23o^24 + 23o Y,
so dass sich mit Hilfssatz 1 und 2 aus (10) ergibt:

2M + 23oI+ Ux + 23o JY244- 23o Y~24o PF24 4- 23o Y + U24- 23o M 4- 23o X

bzw.

2M+[/1^23oM+23oF24+[/2.
Da es sicher ein W£ aus Z4 gibt mit

W*+ Ux~23o W* + C/2,

gilt sogar

2M-23oM+^. (11)

Vergleichen wir diese Beziehung mit (6), so ergibt sich

23oM+ff84^22oM+ W* bzw. 22o M + Tf34 ~ I^4

Wegen W*t W£ e Z4 und F^Wf) > F^Wf) gibt es aber sicher einen vierdimensionalen
Würfel XW mit Pf34 4- 22 o XW ~ W*, so dass 22 o M ~ 22 o XW, nach Hilfssatz 7

also M ~ AJF gilt, womit Ä4 c: fl^, insgesamt also 54 JF4 bewiesen ist.

Eike Hertel, Friedrich-Schiller-Universität, Jena, DDR
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A Criterion for #-Fold Transitivity of Transformation Groups

Let G be a group and let X be a nonempty set. An action * on X is a function *:
G X X -> X such that for every g,he G and xeX, (i) (gh) * x g * (h * x) and (ii)
1 * x x.

A triple (G, X, *) where * is an action of G on X is called a transformation group.
For SQX the stability subgroup of 5 is Gs {g e G \ g * s s for every s e S}. (We
will write Gx instead of G{x).)

If n is a positive integer, we say that G is n-fold transitive whenever for every
two sequences xx, x2, ,xn and yx, y2, yn each consisting of n distinct elements
of X, there exists g e G such that g * xt yt for every t 1, 2, n.

We note that if * is an action of G on X, then for any SQX,* induces an action
of Gs on X — S.

The next theorem is well known (see, for example, [1], Theorem 9.1).

Theorem 1: Let (G, X, *) be transitive. Then for n > 2, (G, X, *) is w-fold
transitive iff there exists an x e X such that (Gx, X — {x}, *) is (n — l)-fold transitive.

It is our purpose in this note to derive a corollary (Theorem 2) of this theorem
which is sometimes more convenient to use. The essential idea is to replace the
transitive condition on (G, X, *) by a restriction on the stability subgroups.

Lemma 1: If (G, X, *) is a transformation group, then (G, X, *) is 2-fold transitive
iff there exists an x e X such that Gx* G and (Gx, X — {x}, *) is transitive.

Proof: Clearly if (G, X, *) is 2-fold transitive then the given condition holds for
any xeX.

Now suppose x e X such that Gx 4= G and (Gx, X — {x}, *) is transitive. Let
y, z eX. If y, z e X — {x}, then there exists geGx such that g * y z. If y z x,
then 1 * y z. Ii y x and z 4= x, then since Gx 4= G, there exists he G such that
h* x * x.So there is an r e Gx such that r * (h * #) z and so (fA) * x z. If y + x,
z—x and A is as before, then there exists tsGx such that t* y h* x h* zso that
(Ä"11) * y z. Hence (G, X, *) is transitive so that by Theorem 1 it is 2-fold transitive.

Lemma 2: Let n > 2 and | X | > 1. Then (G, X, *) is w-fold transitive iff there
exists axixeX such that Gx* G and (Gxi X — {x}t *) is (n — l)-fold transitive.
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