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Eine extremale Verteilung von Grosskreisen

Wie verteilt man bei der Erforschung eines kugelförmigen Planeten n Satellitenbahnen

so, dass der maximale Abstand eines Oberflächenpunktes von der nächsten
Satellitenbahn möglichst klein wird Eine Antwort auf diese Frage ergäbe sich aus
der Richtigkeit der folgenden

Vermutung1): In einem durch n Grosskreise bestimmten Mosaik auf der Einheitskugel

ist der grosste Inkreisradius stets ^ n\2n, und Gleichheit tritt genau im Falle des

regulären Mosaiks {2,2n} ein (d.h., wenn die Grosskreise durch ein festes antipodisches
Punktepaar gehen und «gleichmässig» verteilt sind).

Wenn wir die Grosskreise durch ihre Pole ersetzen, so erhalten wir eine duale
Aussage, die zu obiger gleichwertig ist. Da man die Menge aller antipodischen Punktepaare

auf der Kugel als elliptische Ebene bezeichnet, können wir unsere Vermutung
daher auch so formulieren:

Der Radius des (kleinsten) Umkreises von n Punkten der elliptischen Ebene ist stets

n 1\< — 11 I und Gleichheit tritt genau dann ein, wenn die Punkte äquidistant auf

einer Geraden verteilt sind.
Diese Vermutung ist für n < 2 trivial, und für n 3 wurde sie schon bewiesen

[1]. Wir wollen sie nun für n 4 beweisen (unsere Methode ist mit einigen
Vereinfachungen auch für n 3 brauchbar).

Satz: In einem durch 4 Grosskreise bestimmten Mosaik auf der Einheitskugel ist der

grosste Inkreisradius stets > n/S mit Gleichheit genau im Fall des regulären Mosaiks
{2,8}.

Beweis: Seien (A,A'), (B,B'), (C,C) und (D,D') vier antipodische Punktepaare
auf der Einheitskugel. Wir wählen von jedem Paar einen Punkt so aus, dass bei dem
entstehenden sphärischen Viereck die Summe der Längen der sechs Verbindungsstrecken

möglichst klein wird. Wir können annehmen, dass die Bezeichnung so
gewählt ist, dass gerade ABCD dieses Viereck mit minimaler «Seitensumme» ist.
Wir werden zeigen, dass der Umkreisradius r dieses Vierecks im allgemeinen

< — n — (l —-I und nur im oben beschriebenen Extremfall 3/8nist.
8 2 \ 4/ '

*) Die Anregung, mich mit diesem Problem zu beschäftigen, ging von Prof. Fejes Töth aus,
von dem auch diese Vermutung stammt.
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Die Summe der Längen der drei von einem Eckpunkt P des Vierecks ausgehenden
Seiten bezeichnen wir mit sP. Wenn wir P durch seinen Antipoden P' ersetzen und
die anderen Punkte fest lassen, so sehen wir: sP -f sP' 3 n. Daraus ergibt sich, dass

sp ^ 3/2 n sein muss, da wir sonst durch Ersetzung von P durch P' ein Viereck mit
kleinerer Seitensumme erhielten.

Sei a BC, b CA, c AB,d CD, e DA, f DB, und a die längste dieser
sechs Seiten (Figur). Wir wollen uns zunächst überlegen, dass die vier Punkte A, B,

Zß Zy

Zot

C, D auf einer offenen Halbkugel liegen. Bekanntlich genügt es dazu, zu zeigen, dass

man diese Punkte durch ein Polygon der Länge < 2 n verbinden kann (vgl. z.B. [2],
S. 221 f). Wenn a < njZ ist, so sind alle Seiten < n\2, und mindestens eine < n/2
da nicht alle n\2 sein können, womit dieser Fall erledigt ist. Wenn a > n\2 ist,
gilt sc+Sß=2a-f& + c-f-^ + /<3^, und daher b-t-c + d + f<2 7i. Also ist
jedenfalls r < n\2. Nehmen wir nun r ^ 3 njS an. Wir unterscheiden folgende Fälle:

1. a 2 r.
Wenn die vier Punkte nicht auf einem Grosskreis liegen, ist sc + sr 2a

+ (b + c)+ (d + f) >2a + a-h a 4a 8r ^3n, im Widerspruch zusc + sB<3tc.
Wenn die Punkte auf einem Grosskreis hegen, so ist sc + s# 4a, also notwendigerweise

a 3 ti\4, und es ist leicht zu sehen, dass die Punkte dann äquidistant sein
müssen (sonst wäre es durch Übergang zu geeigneten Antipoden moghch, die längste
Seite zu verkleinern).
2. « < 2 r.

(Von nun an wird nicht mehr verwendet, dass # die grosste Seite ist, sondern nur,
dass die grosste Seite < 2 r ist). In diesem Fall liegen mindestens drei Punkte, sagen
wir A, B und C auf dem Umkreis. Wir nehmen an, dass a > b > c ist. Sei M der

Mittelpunkt des Umkreises, und 2a ^BMC, 2ß <£CM_4, 2y *£AMB. Im
folgenden wird mehrmals von der leicht verifizierbaren Tatsache Gebrauch gemacht,
dass die Funktion

g(x): 2 arcsin(sin r • sin x)
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im Intervall (0, n) streng konkav ist. Wir unterscheiden nun folgende Möglichkeiten:
2 a. a b und 63°1' < a < 90°.

Wir zeigen, dass in diesem Fall sc + s__ > 3 n ist, was wie oben einen Widerspruch

ergibt. Sei h(a) 4a + c < sc?-f sB. h((x) 4 g(<x) -f g(2a) ist konkav, wir
haben daher nur die Randwerte zu überprüfen: &(90°) Sr > 3 Tt, und A(63°l') > 3 n
(es genügt klarerweise, dies für r 3 n/S nachzurechnen).

2b. a > b und 63°1' < oc < 90°

Wir bewegen A auf dem Umkreis auf B zu, bis b a ist. Da ß > y, nimmt dabei
(wegen der Konkavität von g) b g(ß) weniger zu als c g(y) ab, also wird b -f c

kleiner, und es folgt nach 2a): sB H~ sc > 3a -f b -f c > 3 Tt.

2c. 60° < oc < 63°1'.

Wenn wir A wie im Fall 2 b) bewegen, wird b -f- c kleiner. Anschliessend
bewegen wir A und B mit gleicher Geschwindigkeit zueinander, solange bis a ß

63°r ist. Dabei wird b + c — g(oc) + g(2 a) nochmals kleiner, wie eine einfache
Rechnung zeigt. Es folgt:

b + c > g(63°l') + g(106°2') =: v(r). Nun ist e < -^ - (6 + c), f < -^ - (a + c)

3 Tt 3 Tt 3 Tt
< — (b + c), d < — (« + &)< — (b 4- c), und daher d, ^ und

3^ / 3tc \f < — v(r). v(r) ist monoton wachsend, also folgt wegen v I—— I > 207,5°:

3n l 3tz \
d, e und / sind < — v I -^-I < 62,5°.

Der Durchschnitt der drei Kreise mit Radius r > 3 tt/8 und Mittelpunkten A,
B, C besteht nur aus dem Punkt M. Verkleinert man den Radius auf 62,5°, so wird
der Durchschnitt leer. Da d, e und / < 62,5° sind, wäre jedoch D ein Element dieses
Durchschnitts. Damit ist der Satz bewiesen.

Johann Linhart, Universität Salzburg
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Mittelpunktspolyeder im E4

1. Es sei P4 die Menge der eigentlichen Polyeder (Polytope) des vierdimensionalen

eukhdischen Raumes E*. Mit S4 bezeichnen wir die Menge aller konvexen
vierdimensionalen Mittelpunktspolyeder im engeren Sinne - das sind zentralsymmetrische
Polyeder, deren sämtliche dreidimensionale Seitenflächen ebenfalls zentralsymmetrisch
sind [1]. Zwei Polyeder A und B aus P4 heissen translativ zerlegungsgleich (A ~ B),
wenn sie sich in endlich viele paarweise translationsgleiche Teilpolyeder zerlegen
lassen. Ist W ein fester vierdimensionaler Würfel der Kantenlänge 1, so bezeichnen
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