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Kleine Mitteilungen
Proof of a Conjecture of H. Hadwiger

As part of a research problem [2], Hadwiger conjectured that every simple
closed curve in E3 admits a nontrivial inscribed parallelogram. Schnirelman’s method
[4] [1] leads immediately to the following result:

Theorem: Every simple closed C? curve in E? admats a nontrivial inscribed rhombus.

Outline of proof: The statement for plane curves has been proved by Schnirelman
[4] [1]. Every simple closed curve in E3 is homotopic to a plane Jordan curve. If the
curve in E3 is not knotted, the homotopy is in fact an isotopy. If the curve is a knot,
it may be deformed into a plane Jordan curve through a C2-homotopy F(«, ?),
0 <a <2m 0 <t <1, for which F(a, ty) is a simple closed curve except for finitely
many values £, for which F(a, {)), 0 < a < 2, is a curve with one simple transversal
selfintersection. Because of the compactness of the sets involved, a given smooth
homotopy can be locally modified to satisfy the given conditions. The parametriza-
tion can be chosen so that the Jacobian matrix of F is nowhere singular. The theorem
will be proved if we can show that it holds for all curves F(x, #), , < ¢t <t,+ e if it
holds for F(a, ).

By hypothesis, there exist four distinct parameter values a,, oy, a3, &, so that for
E = F(x;, t,) we have

|F—FE|=|K—FE|=|F—FE|=|F-FE|(+0) 1)
det (F,—E, E—F, F,—F)=0

where det denotes the determinant. The problem is to find four points F* on
F(a,?), 2, <t < t,+ ¢, that also satisfy conditions (1). We develop in a Taylor poly-
nomial,

E*=F + EiAai + 2I—:"—At-k o(da;, At)
dx; ot

introduce the expression in (1) and develop as well. An appropriate form of the
inverse function theorem says that under our differentiability assumptions the 4o,
can be found if the linearized problem obtained by putting all o(da;, 4¢) = 0, can be
solved. From (1) one obtains a system of four nonhomogeneous linear equations
(that can immediately be written down) for the four unknowns Ad«; (v = 1, 2, 3, 4).
The matrix of the system has the form



36 Kleine Mitteilungen

P12 — Qa1 + Pag — P32 0 -
0 P23 ~ QP32 T P34 — Qa3
— QPua 0 P34 — Pa3 + P
| M B2 M3 Ha i

where
SF,
¢y = |F—F ! (‘dﬁ&?, E)

and the y; are determinant expressions derived from the last equation (1). Parentheses
denote the euclidean scalar product. In the generic case, the rank of the matrix is 4
and, therefore, the problem has a unique solution. A dimension argument [4, 1 p. 107]
shows that the curves for which a rhombus can be found for ¢, < ¢ < ¢, + ¢ are dense
in the space of all C2? curves. A standard convergence argument then shows that the
prolongation property is true for all curves in question. We are not concerned with
uniqueness since all plane C? Jordan curves admit a one-parameter family of rhom-
buses [4]. It is clear that the deformation of a nondegenerate rhombus will yield a
nondegenerate rhombus since otherwise the curvature of the curve cannot be bounded,
see [1] p. 109. The argument breaks down if F(«, £) has a double point. However,
since the intersection is transversal, a plane through two points of F(«, %) that are
close to the double point of F(«,?) and whose parameter values are close to one another,
will intersect the other arc passing close to the double point at most in one point
close to that double point. Therefore, the rhombus inscribed in F(«, £) cannot have
edges of length zero.

The method of proof is very powerful for this kind of problem. In a recent disser-
tation [5], a student of mine, Mrs. Tropper, has used the method to prove, among
other things, the following:

For n > 3, there are infinitely many regular crosspolytopes (for » = 3, regular
octahedra) inscribed in any surface C2-diffeomorphic to the sphere S7—1in En".

n chords inscribed in a convex hypersurface in E* are said to form an n-uple of
conjugate diameters if support planes at the endpoints of one chord parallel and
parallel to the directions of the » — 1 other chords of the n-uple. For n = 2, the
existence of conjugate diameters has been proved by Heil and Krautwald [3]. The
result of [5] is:

Every convex hypersurface in E*, » > 3, admits infinitely many distinct z#-uples
of conjugate diameters.

Research partially supported by NSF Grant GP-27960

H. Guggenheimer, Polytechnic Institute of New York
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A Note on a Problem in the Theory of Sequences

1. Introduction. It is a well-known fact in analysis that the existence of

n
Jim 2 4 M
is sufficient to implyklirréo a, = 0. That condition (1) is not a necessary condition is

illustrated by the sequence @, = 1/%. It is only reasonable, therefore, to try to find
conditions weaker than (1) that would guarantee klirrolo a;, = 0. The aim of this paper

is to present a theorem giving one such condition, namely:

Theorem 1. Let (a,) be a sequence of complex numbers, such that

lim Z": a, (2)

n=>00 3 TIn]+1
exists for every fixed A€ (0,1). Then kli_{rgo a, = 0.

It should be noted that the existence of limit (2) for a single 4 € (0, 1) is generally
not sufficient to guarantee that the sequence (a,) converges to zero. This can be seen,
for instance, by choosing 4 = 1/, and considering the sequence (a,) defined as follows:

1 if n=2m
@y == —m=-1  fp=2m4274+1, §=0,...,2m1—-1 m=1,2,...)
0 ifn=2m+ 27, =1,..., 2m-1 -1

The sequence (a,) clearly does not converge to zero. On the other hand, if n =2m + 4
or n=2m+ 4743, where 1 =0,...,2m-2—-1 it is easy to prove that

”
a,=0 forn > 2.
k= [n/2]+1

Using this result, we can easily deduce that

”

;‘ | ="t
k=[n/2]+1

ifn=2m+4j+1orn=2m+45+2 wherej=0,...,2m=2 —1, Hence

a;| < 4/n—>0 (n — o0).

k= [n/2]+1

In fact, for any integer £ > 2, we can define a sequence (4,) such that (2) holds
for A = 1/k, but lim @, # 0. The sequence (a,) defined as follows has these properties:

k—2 if n = km
a,={ —1 ifn=~Fk"g, 2<q<k-1 m=1,2,...)

0 ifn=kqg+7r,1<g<k—1and 1<r<in-1
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In this case, it can be verified that

”
a;=0 for n >k.
i =[nlk)+1
The situation is quite different if we consider irrational numbers in (0,1), as the
following theorem shows.

Theorem 2. Let (a,) be a sequence of complex numbers such that (2) is true for
A=Eand A =1 — & where & is an irrational number in (0,1). Then lim a, = 0.

Theorem 1 is clearly a corollary of Theorem 2. nTee

We might mention here that Theorem 1 has an application in the theory of
regularly varying sequences, and it was in the context of a problem in this field that
Theorem 1 was formulated (see [1]).

Some questions unresolved in this paper are the following: What can be said
about the sequence (a,), if (2) is true for

(1) two or more distinct rational numbers in (0, 1) ?

(2) every rational number A€ (0, 1) ?

(3) a single srrational number &€ (0, 1) ?

2. Proof of Theorem 2. The proof of Theorem 2 is based on the following number-
theoretic result:

Lemma. Let A€ (0, 1) and let n be an integer. Then at least one of the following three
statements 1is true:

i MAn]l=21in
() [An]= (A — 1)]
(i) [(1—An]=[1—2) (n—1)]
Proof. Since [An] < An < [An] + 1, we can write
An=[An]+o (3)

where 0 < p < 1. If p =0, then (i) is true. Therefore, we can assume 0 <p < 1.
If 2 < p, then, by (3),

An—1)=An—A=[An]l+o0—4

where 0 < ¢ — A < 1. Hence [A(» — 1)] = [A#%], and consequently (ii) holds. — Finally,
if p < 4, then, by (3),

Ql—-An=n—[An]—p=n—1—-[An]+1—p=n+1-9p
where n; = [(1 — A) n]. Therefore,
I-Ar=-1)=1-Nn—Q1-N=m+(1-0-(1-4=n+i-¢
where 0 <A — g < 1. Hence [(1 — 4) (» — 1)] = [(1 — A)»] and so (iii) holds.
Proof of Theorem 2. Let

AN= 3 o

k=[An]+1
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and let £€ (0, 1) be irrational. Since the sequences (4,(§)) and (4,(1 — &)) converge
to finite limits, they are Cauchy sequences. Hence there exists N, ; such that for
#n> N, we have |4,(&) —A4,_(6)| <eand [4,(1 — &) — 4,_,(1 — &) | <e. Since
& is irrational, [£ n] # & n and, consequently, by the previous lemma, we know that
either (ii) [ #] = [£ (n — 1)] or (iii) [(1 — &)n] = [(1 — &) (n — 1)] is true. In the first
case, we have

”n n-—1
2, | = G- Y 4| =48 An_1(5>‘<e
k={n&+1 k=[(n-1)§]+1

In the second case, we have
” n~—1
l ay | = 2 A — 2k
k=[n(1-£)]+1 E=[(n-1)(1-§]+1
Thus, for » > N, . we have |a,| < & and the theorem is proved.

I am deeply grateful to Professor R. Bojanic for his suggestions and guidance
throughout the writing of this paper.

Rada Higgins, Ohio State University Columbus, USA

4,1-8) —4,,0-9 l <e
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Elementarmathematik und Didaktik
Ein reduziertes Erzeugenden-System der Kongruenzgruppe in der Ebene

1. Die Gruppe der Kongruenz-Abbildungen der Ebene

Unter einer Isometrie oder Kongruenz-Abbildung v in der Ebene versteht man
das Produkt aus endlich vielen Geraden-Spiegelungen. Bezeichnet ¢, die Spiegelung
an der Geraden g, dann ist also

Y =0,006,00,0...00,. (1)

Die Achsenspiegelung ist eine involutorische Abbildung; wird die Bildfigur einer
gegebenen Urfigur an der gleichen Achse gespiegelt, so ergibt sich wieder die Urfigur.
Das Produkt jeder Spiegelung mit sich selbst ist daher die identische Abbildung ¢, die
jeden Punkt der Ebene auf sich selbst abbildet:

0,00, =¢t. (2)
Hieraus folgt, dass die Kongruenz-Abbildung y nach (1) eine inverse Abbildung
besitzt:

y1=¢,0...00,00,00,. (3

In den Produkten y o y~! und y~! o y sind ndmlich Produkte von je zwei gleichen
Spiegelungen vorhanden, die man wegen (2) jeweils streichen kann. Man erhilt dann
schliesslich

yoyl=¢ und y-loy=1:. (4)
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