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Rationals Not Expressible as a Sum of Three Unit Fractions

I. Introduction

Let k be a positive integer and define

dk In : — 1 1 ; x,y,z positive integers > (1.1)
[ n x y z J

and

Xk sup n (1.2)

n$dk

It has been conjectured by Schinzel [5] that Xk < oo for all k; some specific cases of
this conjeeture are due to Erdös [3] — k 4; Sierpinski [5] — k 5; and Aigner
[1] - k 6, 7.

Since the set of fractions expressible as a sum of three unit fractions is nowhere
*

dense ([1, 7]) we must have lim sup — 0, that is Ak must approach oo faster

than k does. However, for small k, Xk also seems small. For example if the conjeetures
are correct A4 1, Xh 1, A6 1 and A7 2, where the magnitude of 7/2 alone implies
that 2 £ d7. The first case where Xk > k is k 8. Aigner [1] noted that 17 ^ <58 so
A8 > 17. We will see later that actually A8 > 241.

In this paper we will look for examples of n $ dk for k > 6.

II. General Methods

One of the principal tools we will use in our search for n $ dk is the following
lemma.

Lemma 2.1 a/b 1/x + 1/y if and only if there exist positive divisors dx and d2 of b

such that a\dx + d2.

This is a modified form of a result of Aigner [1] Satz 6. For a complete proof
of some generalizations of Lemma 2.1 see [7].

3n
If k/n 1/x + 1/y -f- 1/s, 0 < x < y < z, then x < -r-. Hence, in checking if

n 3n
# G <J& it suffices to apply Lemma 2.1 to k/n — 1/x for each x such that ~r < x <
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Also, since nedk implies nmedk for all m > 1, we can limit ourselves to the case
where n is a prime.

The following result shows that we may restrict the values of x we must check
even further.

Theorem 2.2 Let k > 4, p a prime such that (k, p) 1, and let x < y < z be positive
integers such that

Ä-1 i. *

p x y z
*

then # < (2 ^> + 2)/£. Moreover, if x > 2 pjk then either k\2p + l and x=(2p + l)/k
or & | p + 1 and # (2p + 2)\k.

Proof. Now by Lemma 2.1

k 1 kx — p all___ „ ^_^1 =_.__ + __; (2.2)
p x px b y z

if and only if there exist dlt d2 \ px such that dx + d2 s(& # — £) for some integer s;
in which case

* 1 1

y ~7TT + -7TT- (2-3)

(i) s(i)
Hence, # < s bjdx < s b\d2 since we may assume dx > i2-

Now, assume that # > 2pjk. This implies that kx — p >p. We know that
# < 3p/k < 3p/4 sopfx. Hence (p, kx) 1 and (p, kx-p) 1.

If d < e are any two positive divisors of x, then kx — p <f d + e. This may be

seen as follows:
3 3

Assume kx — p \ d + e* Then d + e < 2x < ~p <~(kx — p), so kx — p

d + e. Also, if e <x, d+e<x<kx— p; so e x. Hence, d= (k — 1) x — p
which implies d | />, and so d 1 since (/>, #) 1. Therefore

£+1 2p
# =-_ —;^ < _^ # a contradiction

Since we have that dXt d2\px and kx — p\dx + d2t by the above, we cannot
have dx$ d%\ x. Similarly we cannot have dx pdz and d2 pdA where dZid^\x, since
this would mean that k x — p \ p (dz + d4) which implies k x — p \ dz + dA again
contradicting what we have shown above. Therefore, and since dx ^ d2t we must
have dx*=s pd where d | x and d2 | #.

Now pd + d%=* $ (kx — P)> sp and d%< x <p which implies i > s. Hence,

dx dx pd d "~~
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but x < s b\dx and so^ s^ s b\dx y. Thus from (2.2), (2.3) and (2.4) we sea
that

k 2
_ kx-2p 1

p x px z '

and so kx — 2p\px.
Clearly (p, kx — 2p) 1, so kx — 2p | x which implies kx — 2p \2p which

implies kx-2p l or2. Ii kx-2p l then k | 2p + 1 and x (2p + l)jk. If
kx — 2p 2, then (2.5) holds if and only if x is even, which implies x (2p + 2)/k
and k\p+ 1.

This completes the proof of our theorem.
This theorem says that in looking for a Solution of (2.1) we need only check

x < (2p + 2)/k. The theorem is best possible as the cases k \2p+ 1 and k | p + 1

show; since if k \ 2 p + 1 then

k
_

1 1 1

7 "" WTi)]k + W+ijJk + JJ^+i)ß'
and if A | £ + 1 then

A
__

1 1 1

£~
~~ Y(p+l)Jk + Y(f+V)Jk + J^p+Vffk '

Although these examples show that # may be as large as (2 p + 2)/k in a Solution of
(2.1), in all of the examples so far encountered, there have been other Solutions öf (2.1)
with a smaller value of x. For example in the case k\p + 1 mentioned above, we may
take x (j> + l)jk sincekl 1 1

+ „.,.. «rn- +
p (p+l)lk 2p(f>+l)lk 2p(p+l)\k

If x0 denotes the smallest value of x such that (2.1) is solvable, how close to (2 p + 2)/k
can x0 be If k 12, p 727 then #0 108;

12 1 1 1

727 108 138 1805868

727
Since 108 > (1.78) ^rr-, we see that the bound 2pjk cannot be improved too much.

Probably even better examples can be found.

III. Numerical Results

In this section we will give some examples of primes p for whicli (2.1) has no
Solution. Using Lemma 2.1 it can be shown that for a fixed k, (2.1) is solvable if p is

an element of certain residue classes. For small values of k we can restrict our search

for counterexamples to a very few residue classes. For example, for k 5 Stewart [6]
has shown that if (2.1) is unsolvable then p l(mod 278460). Using this he has
shown that (2.1) is solvable for all p < 1,057,438,801. Yamamoto [8] has shown that
for k 4, (2.1) is solvable for all p < 107. This extends work done by Aigner [1],
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Bernstein [2], Palamä. [4]. As k becomes larger this procedure becomes less effective
since it eliminates a smaller fraction of the integers from consideration, and it multi-
plies the number of cases to be considered. For example consider the cases k 5 and
k 10. If k 5 we need consider only one residue class modulo 278460. But if
k 10, although we can easily eliminate the residue classes 2, 4, 5, 6, 7, 8, 9, 10

(mod 10), we are left with the possibilities p 1, 3, 7 (mod 10). It is not hard to show
that actually we may restrict ourselves to the residue classes 1 (mod 10), 3 (mod 140),
43 (mod 140) and 7 (mod 60). Furthermore we can replace the residue class 1 (mod 10)

by the residue classes 1, 11, 31, 41, 61 (mod 90) which would reduce the number of
numbers considered slightly, but we would have five separate cases instead of
only one. It is probably possibly to find a procedure somewhat more efficient for
k 10 than this; but as we shall see in Theorem 3.2, since there are several primes p
for which (2.1) is unsolvable with k 10 and these p fall in three different residue
classes modulo 10, it is impossible to do nearly as well as we can in the case k — 5.

The procedure used in this paper is to remove as many residue classes as seems

practical by the above method, and then use a Computer to search for counter-
examples in the remaining residue classes. The method used in the Computer search
is essentially that given near the beginning of section 2.

As an example we take k 6, and assume (2.1) is not solvable. It is easily seen

that p 6 n + 1. We now eliminate various residue classes for n as follows.

6 156n+ 1 tt+1 (6tt+l)(tt+l)' W.x;

Now apply Lemma 2.1.

n di ä2

4 {mod 5) 5\n 4 1

SS 3 (mod 5) n + l 1

s 2 (mod 5) (6n + l)(n + 1) 1

1 (mod 5) (6n + l)(n +1) 1

s 5 (mod 10) (n + l)/2 2

Hence n 0 (mod 10) and p 60 m + 1. Then

6 1 11
(3.2)

60 m 4- l l0m + 2~ 2 (60m + 1) (5m + 1)
*

Apply Lemma 2.1 again.

tn dx d*

s 10 (mod 11) 2(60 m + 1) (5 m + 1) 1

s 8 (mod 11) (60 m + 1) (5 m + 1) 2

s 7 (mod 11) (60 m + 1) (5 m + 1) 2

s 6 (mod 11) 5w + l 2

s 5 (mod 11) 2(60 m + l)(5m + 1) 1

s 4 (mod 11) - 5 m + 1 1

e 3 (mod 11) 2(5 m + 1) 1

s 2 (mod 11) 11 f 5m + 1
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Thus m 0, 1 or 9 (mod 11) and so p 1, 61 or 541 (mod660).
Using the methods described above we have the following results.

Theorem 3.1 The equations

6 111____ + __ + __ (3.3)
p x y z

and

7 111=__ __ + ___ + _ (3.4)
p x y z

are solvable for all 3 < p < 100,000.

Theorem 3.2. The following table lists values of p > kj3 for which

* 1 1 1
_____ + __ + ___ (3.5)

p x y z

is not solvable.

k P

9

10

11

12

13

14

15

16

17

18

11, 17, 131, 241

5, 11, 19

7, 11, 43, 61, 67, 181

37

5, 13, 29, 37, 73, 97, 193,433, 577, 1129, 1657, 1873, 2521, 2593, 3433, 10369, 12049,
12241

5, 7, 53, 61, 67, 79, 211, 281

5, 17, 19, 29, 59, 257, 353

17, 19, 23, 31, 47, 53, 61, 79, 113, 137, 151, 197, 233, 271, 541, 1103, 1171,1367, 4201

7, 11, 13, 17, 23, 37, 73, 97, 113, 131, 167, 193, 241, 257, 421, 577, 593, 641, 769, 1201,
1489, 2113, 2521, 2689, 3169, 3361, 4801, 4993

7, 13, 19, 23, 41, 53, 71, 73, 157, 281, 421, 1123, 2081

7, 11, 13, 19, 23, 29, 31, 37, 41, 47, 59, 61, 73, 109, 113, 131, 137, 149, 181, 193, 223,
239, 281, 379, 389, 397, 443, 457, 541, 599, 613, 661, 761, 811, 821, 911, 1009, 1297,
1381, 2269, 2819

For 8 < k < 11 the table is complete for p < 25000, for 13 < k < 18 the table
is complete for p < 5000 and for k 12 it is complete for p < 100000. The case
k 12 was carried further than the others since it is the first case for which (3.5) is
unsolvable for some relatively large primes. It is quite likely that more counter-
examples for 13 < k < 18 can be found, if we check for p > 5000. The total
Computer time used in verifying theorems 3.1 and 3.2 was approximately 20 minutes
using an IBM 360/67.

These examples show that Xk gets relatively large for even some small values of
k (XX2 > 12241), something that was not evident for k < 7 studied previously.
However, in the case k 12 which was carried out further than the others, there
were no more counterexamples for 12241 < p < 100000. Thus these examples
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appear to give some evidence both for and against the general conjeeture that
Xk < oo for all k.

The author wishes to thank John Steinig for several valuable suggestions.

William A. Webb, Washington State University, Pullman, Washington

REFERENCES

[1] A. Aigner, Brüche als Summe von Stammbrüchen, J. reme angew. Math. 214)215, 174-179,
(1964).

[2] L. Bernstein, Zur Losung der diophantischen Gleichung m/n 1/x + 1/y + 1/z, insbesondere

tm Falle m 4, J. reme angew. Math. 211, 1-10 (1962).
[3] P. Erdös, On a diophantine equation, Mat. Lapok, 7, 192-210 (1950).
[4] G. PalamA, Su di una congettura dt Sierpinski relatwa alla possibihtä in numeri natwrah

della 5/n l/xx + l/x2 + l/x8, Boll. Un. Mat. Ital., 13, 65-72 (1958).
[5] W. Sierpinski, Sur les decompositions de nombres rationnels en fractions primaires, Mathesis

65, 16-32 (1956).
[6] B. Stewart, Theory of Numbers, 2nd ed., 198-207, (New York, 1964).
[7] B. Stewart and W. Webb, Sums of Fractions with Bounded Numerators, Can. J. Math. 18,

99&-1003 (1966).
[8] K. Yamamoto, On the Diophantine Equation 4/n 1/x + 1/y + 1/z., Mem. Fac. Sei. Kyushu

U., [A] 19, 37-47 (1965).

Eine bemerkenswerte Abbildung der Punkte des Raumes

auf die Kreise einer Ebene

Einleitung

Die im folgenden untersuchte Abbildung hat gewisse Ähnlichkeiten mit der
Zyklographie [1, 2]. Bei ihr werden die Punkte des dreidimensionalen Raumes Rs

auf die Kreise einer im Rz enthaltenen, waagrecht gedachten Ebene abgebildet, wobei
statt der in der Zyklographie für den Abbildungsvorgang verwendeten Drehkegel
mit lotrechter Achse Drehparaboloide mit lotrechter Achse und festem Parameter

1/2) treten.
Ein wesentlicher Unterschied gegenüber der Zyklographie hegt darin, dass die

Abbildung ohne Orientierung der Kreise auskommt und trotzdem umkehrbar
eindeutig ist. Durch zyklographische Deutung der Bildkreise wird im Raum eine

zweieindeutige Punkttransformation induziert, die einen klaren Einblick in das Wesen
der neuen Abbildung gewährt.

Einer Geraden des JR8 entspricht die Menge der eine Parabel der Bildebene
doppelt berührenden Kreise, während die Scharen der einen Mittelpunktskegelschnitt
doppelt berührenden Kreise von Parabeln mit lotrechter Achse herrühren. Diese
Tatsachen lassen die konstruktive Lösung verschiedener damit zusammenhängender
Aufgaben zu*
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