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146 M.S. KrLaMkiIN: Two Non-Negative Quadratic Forms

If we now let (a’, ', ¢’) = (a?, b?%, c?) and restrict ABC to be an acute triangle,
then a’, b’, ¢’ are sides of a general triangle of area A’. By virtue of the known inequal-
ity, 4 42 > Y3 A’, of Finsler and Hadwiger [1, p. 91] together with (9), gives

? bl q !’

¢’ ¢ a + a'b =234 10
qg+r + r+p p+4q V (10)
or equivalently
csc A’ csc B’ r ¢csc C’
P . 4 oo > V3. (10)’
q+r r+p p+yq

The last two forms generalize the known special case corresponding to p = ¢ = 7»
(2, p. 31, 43].

Other related extensions will be given in a subsequent paper. Also, for other
examples of non-negative quadratic forms and their associated triangle inequalities,
see [5], [6] and the references therein.

Murray S. Klamkin, Ford Motor Company, Dearborn/USA
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A Note on Discontinuous Functions

Let J denote the class of real-valued functions defined and everywhere discon-
tinuous on an interval [a, b]. F. Fricker [1] considered questions concerning the set
W) ={x: 31)1_1;1’}‘ f(v) exists} for fe J. He asked whether it is possible for #(f) to be dense

in [a, b]. A negative answer to this question was obtained by R. Jeltsch [2]. The pur-
pose of this note is to characterize those sets H for which there exists f € J such that
H = U(f).

We begin with three lemmas.

Lemma 1. For any real-valued function f defined on [a, b] the set H(f) = {x:
}gri {(y) exists} is of type G;.

Proof. For each x € [a, b] and § > 0 let

wa(x) =sup{| fy) = f(&) |: 0 < |y —x| <4, 0<|z—x]| <$}



A.M. BruckNER and J. CEDER: A Note on Discontinuous Functions 147

and let w(x) = gl_r)r% ws(x). Thus w(x) is the deleted oscillation of f at x and ;1_% i)
exists if and only if w(x) = 0.Let H, = {x: w(x) < 1/n}. It is easy to verify that H,is

open for each # and that H(f) = (| H,. Thus H(f) is of type G,.
n=1

Lemma 2. For any real-valued function f defined on [a, b], the set D(f) =
{x € H(f): ;1—135 f(v) = f(x)} is denumerable.

Proof. For each positive integer #» and each rational number 7, let

A, ={xe W {) : f(x) <7 < [(y) for all y satisfying 0 < |y — x| < 1/n}
and
B,, ={x € H#(f) : f(x) > r > f(y) for all y satisfying 0 < |y — x| < 1/n}.

It 1s clear that for each # and 7, the sets 4, and B,, are finite subsets of [a, b]. Thus the
union of all these sets is denumerable. Since D (f) is contained in this union, D(f) is
also denumerable.

Lemma 3. Let H be a denumerable set of type G,. Then there exists a descending

sequence of {G,}3_; open sets such that H = [} G, and G, ~ G,,, is dense-in-itself
n=1
for each #.

Proof. Since H is of type Gy, there exists a decreasing sequence {H,}5_, of open

sets such that H = [} H,, and since H is denumerable we may choose H, such that for
n=1

eachn, H,— H,,, + @.Let G; = H,. Let C consist of the isolated points of H, — H,.
If C= @, choose G, = H,. If C + &, then C is denumerable and there exists a denu-
merable family of disjoint intervals contained in H, and covering C, each of which
contains exactly one point of C. Let x € C and let B be such an interval. Then there
exists a component interval I of H, having x as an endpoint. Since H is a denumerable
set of type G4, H is nowhere dense. It follows that these exists a monotonic sequence of
disjoint nondegenerate closed intervals {I,}%°_; such that I, — x and for each #,
I,CINB~H. Let I(x) = -, I, and G, = H, — | J{I(x) : x € C}. Then G, s open,
HC G,, and G, — G, is nonvoid and dense-in-itself. Carrying out the above construc-
tion inductively, we arrive at the desired sequence {G,}5_;.

Theorem. Let H C [a, b]. A necessary and sufficient condition for there to exist
an everywhere discontinuous function f such that H = {x: J}lrr}: f(v) exists} is that H

be a denumerable set of type G,.
Proof. The necessity of the condition follows immediately from Lemmas 1 and 2.
We turn now to the sufficiency of the condition. By Lemma 3, there exists a

o0

decreasing sequence {G,}%_, of open sets such that H = [) G,and G, — G,, , is nonvoid
n=1

and dense-in-itself for each »n. Let &, %,, . . . be an enumeration of H. For each #,

let 4, and B, be nonvoid, dense subsets of G, — G,,, such that 4, "B, = @ and
A4,u B, = G, — G,4,. Define a function f by
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if x=~h, forsome £k

if xeA, forsome xn.

if xe B, forsome =

N I = T A

We show f is everywhere discontinuous and limf(y) exists if and only if x € H. First,
y-—>x

suppose x € H. If x, —> %, x, € H, then x, = I, so f(x,) = 1/k, and linolof(xn) = 0. If
%, > %, x, ¢ H, then for each » there exists a natural number ¢, such that
%, € G, — G, +150 f(x,) = 1/g,. It is easy to verify that Ji_{réoqn = %0 sonli_rgof(xn) = 0.
It follows that ;im f(y) =0 for all x € H. Since f(x) = 1/k for some %, f is discontinuous
at x.

Now suppose x ¢ H. There exists a natural number » such that x € G, — G, ;.
But the sets 4, and B, are each dense in G, — G, so that, by the definition of f,
the numbers 1/# and — 1/n are both in the cluster set of f at x. It follows that limf(y)

Y>x

does not exist.

This completes the proof of the theorem.

Remark 1: The foregoing proof can be easily modified to apply to nowhere
continuous functions on a complete separable metric space which is dense in itself.

Remark 2: Since a denumerable set of type G, is nowhere dense (in fact, nowhere
dense-in-itself), we see that the question posed by F. Fricker has a negative answer.

A. M. Bruckner?) and Jack Ceder, University of California, Santa Barbara
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Kleine Mitteilungen
There is no Odd Super Perfect Number of the Form p2a

In [4] the author defined super perfect numbers as positive integers » such that
o (a(n)) = 2n, where o(n) denotes the sum of all the positive divisors of #. It has
been shown in [4] that an even integer # is super perfect if and only if » = 27, where
27+1—1is a prime and posed the existence of odd super perfect numbers as a problem.
This is still an open problem. In [2] H. J. Kanold has shown that if » is an odd super
perfect number, then » must be a square. In [1] P. Bundschuh posed the problem,



	A note on discontinuous functions

