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146 M S Klamkin- Two Non-Negative Quadratic Forms

If we now let (a', b', c') (a2, b2, c2) and restrict ABC to be an acute triangle,
then a', b', c' are sides of a general triangle of area __T. By virtue of the known inequality,

4 A2 > |/3 A', of Finsler and Hadwiger [1, p. 91] together with (9), gives

*
b' c' + —1— d a' +

Y
a' b' >2 ]/3 A' (10)

q + r r+p p + q

or equivalently

p esc A' q esc B' r esc C£. ___ + 1 + > 1/3 (ioy
q + r r + p p + q

y y }

The last two forms generalize the known special case corresponding to p q r
[2, p. 31, 43].

Other related extensions will be given in a subsequent paper. Also, for other
examples of non-negative quadratic forms and their associated triangle inequalities,
see [5], [6] and the references therein.

Murray S. Klamkin, Ford Motor Company, Dearborn/USA
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A Note on Discontinuous Functions

Let 3 denote the class of real-valued functions defined and everywhere
discontinuous on an interval [a, b]. F. Fricker [1] considered questions concerning the set

$ (/) fx: lim/(y) exists} for / e 3. He asked whether it is possible for H (/) to be dense
y—*-x

in [a, b]. A negative answer to this question was obtained by R. Jeltsch [2]. The pur-
pose of this note is to characterize those sets H for which there exists / e *3 such that
H #(/).

We begin with three lemmas.
Lemma 1. For any real-valued function / defined on [a, b] the set ?/(/) {x:

lim/(y) exists} is of type G$.

Proof. For each x e [a, b] and d > 0 let

co8(x) sup {| f(y) ~f(z)\:0<\y-x\<ö,0<\z-x\<d}
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and let co(x) lim co8(x). Thus co(x) is the deleted oscillation of / at x and lim/(y)
exists if and only if co(x) 0 .Let Hn {x: a>(x) < 1/n}. It is easy to verify that Hn is

CO

open for each n and that H(f) f\ Hn. Thus ?/(/) is of type Gs.
M l

Lemma 2. For any real-valued function / defined on [a, b], the set T)(f)
{x e'U(f): lim/(y) + f(x)} is denumerable.

Proof. For each positive integer n and each rational number r, let

Anr {xe U{f) : f(x) < r < f(y) for all y satisfying 0 < | y - x \ < 1/n}

and

Bnr {xe #(/) : f(x) > r > f(y) for all y satisfying 0 < | y - x | < 1/n}

lt is clear that for each n and r, the sets Anr and Bnr are finite subsets of [a, b]. Thus the
union of all these sets is denumerable. Since £)(/) is contained in this union, X)(f) is
also denumerable.

Lemma 3. Let H be a denumerable set of type G8. Then there exists a descending
00

sequence of {GJ~=1 open sets such that H Q Gn and Gn ~ Gn+1 is dense-in-itself
n-1

for each n.
Proof. Since H is of type Gs, there exists a decreasing sequence {Hn}^wml of open

CO

sets such that H f] Hn, and since H is denumerable we may choose Hn such that for
« i

each n, Hn — Hn+1 + 0. Let Gx Hv Let C consist of the isolated points of Hx — _t_'2.

If C 0, choose G2 H2. Ii C + 0, then C is denumerable and there exists a
denumerable family of disjoint intervals contained in Hx and covering C, each of which
contains exactly one point of C. Let xeC and let B be such an interval. Then there
exists a component interval / of H2 having x as an endpoint. Since H is a denumerable
set of type G8, H is nowhere dense. It follows that these exists a monotonic sequence of
disjoint nondegenerate closed intervals {/„}~=1 such that In -> x and for each n,
In C / n B — H. Let I(x) U^°=i 7« and G2 H2- \J{I(x) :xeC}. Then G2 is open,
# C G2, and Gx — G2 is nonvoid and dense-in-itself. Carrying out the above construction

inductively, we arrive at the desired sequence {Gn}™=1.

Theorem. Let HC[a,b]. A necessary and sufficient condition for there to exist
an everywhere discontinuous function / such that H {x: lim/(y) exists} is that H
be a denumerable set of type G8.

Proof. The necessity of the condition follows immediately from Lemmas 1 and 2.

We turn now to the sufficiency of the condition. By Lemma 3, there exists a

decreasing sequence {GB}~= x of open sets such that H f] Gn and Gn — Gn+1 is nonvoid
M l

and dense-in-itself for each n. Let hlt h2, be an enumeration of H. For each n,
let An and Bn be nonvoid, dense subsets of Gn — Gn+1 such that An n Bn 0 and

An\j Bn Gn — <£„+!• Define a function / by
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1

A
if x hk for some *

1

n
if xeAn for some n

1

n
if xeBn for some n

i(x)

We show / is everywhere discontinuous and lim/(y) exists if and only ii x eH. First,
y-+x

suppose x eH. If xn -> x, xn eH, then xn hk so f(xn) l/kn and lim f(xn) 0. If
xn -> x, xn $ H, then for each n there exists a natural number qn such that
a;„gG? — Gq +1 so /(#„) ljqn. It is easy to verify that lim qn oo so hm /(#„) 0.

It follows that lim/(y) 0 for all x eH. Since f(x) 1/k for some k, f is discontinuous
y-+x

at x.
Now suppose x $ H. There exists a natural number n such that x e Gn— Gn+1.

But the sets An and _9„ are each dense in Gn — Gn+1 so that, by the definition of /,
the numbers 1/n and — 1/n are both in the Cluster set of / at x. It follows that lim/(v)

y->x
does not exist.

This completes the proof of the theorem.
Remark 1: The foregoing proof can be easily modified to apply to nowhere

continuous functions on a complete separable metric space which is dense in itself.
Remark 2: Since a denumerable set of type G8 is nowhere dense (in fact, nowhere

dense-in-itself), we see that the question posed by F. Fricker has a negative answer.

A. M. Brückner1) and Jack Ceder, University of California, Santa Barbara
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Kleine Mitteilungen

There is no Odd Super Perfect Number of the Form p2«

In [4] the author defined super perfect numbers as positive integers n such that
a (<r(n)) 2n, where a(n) denotes the sum of all the positive divisors of n. It has
been shown in [4] that an even integer n is super perfect if and only if n 2r, where
2r+1 — lisa prime and posed the existence of odd super perfect numbers as a problem.
This is still an open problem. In [2] H. J. Kanold has shown that if n is an odd super
perfect number, then n must be a square. In [1] P. Bundschuh posed the problem,

x) This author was supported m part by NSF Grant GP-18968.
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