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und daher

<p(U U W) f ((U + Xt) UW) <p(U) (f(U) + Xt) + <p{W) f(W)

cp(U uW)f(U UW) + X(p(U)t

für alle grossen X. Wegen

/ ((U + Xt) u W) e konv ((U + Xt) u W) c #+

muss also 99(cT u PF) < 0 sein. Andererseits gilt für hinreichend grosse X

<p(U u W) f(U U (W + Xt)) <p(U u W) f(U uW)+XteH+
und

f(U U [W + Xt)) e konv (LT u (W + A.)) <= #+

was <p(£/ U W) > 0 nach sich zieht. Die Annahme war also falsch, das heisst (p ist
definit.

Rolf Schneider, TU Berlin
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Two Non-Negative Quadratic Forms

I. Introduction

In problem E 2348 [1], L. Carlitz has given the inequality

JJ Ri ('2 + rs) > £ (rx + r2) (rx + r8) (1)

where Rv R2, Rs and rx, r2, r3 denote the distances from an inferior point of a triangle
ABC to the vertices _4, B, C and the sides a, b, c, respectively. Coupling (1) with the
known lower bounds Rt > (r2c + r3b)ja, etc. [2, p. 107], suggests the stronger inequality

v 1 ¦
(2)

f b + c\ c + a) [ a + b)
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We shall show that Fx > 0 is indeed valid for all triangles ABC and any real values
of rv r2, r3. Then by using the lower bounds b/c + cjb > 2, etc., inequality (2) can be

partially strengthened to

R=r* + ri + r\ -{3-^}-H3-T}'
f a + b)
J3 — j r, r2 > 0

(3)

However, here rv r2, r3 are to be arbitrary non-negative numbers.

II. Fx > 0

A Standard way of showing Fx is non-negative is to show that its associated matrix

M

b2- bc -f- c2

bc

b + a — 3c

2c

c + a — 3b

a + b - 3c

2c

c2 — ca-\- a2

ca

c + b - 3a

a -f c — 3b

2b

6 + c — 3a

2a

a2-¦ab + b2

2b 2a ab

is positive semidefinite. As is well known, F1 is a non-negative form iff all the principal
minors of M are > 0. The first two leading ones, M1 and M2 are easy to establish. For

bc Mx - (6 - c)2 + bc> 0

and after some manipulation

4abc2 M2 4c2 {JJ a2- JJ ^} + ab {2 JJ ab - JJ a2}

That M2 is non-negative, follows from two elementary triangle inequalities [2, p. 11].
The non-negativity of the remaining Ist and 2nd order principal minors follows by
symmetry.

To simplify the valuation of Mz det M, we make the duality transformation [3],

a — y-\-z, b z 4- x c x + y

where #, y, 2 are arbitrary non-negative numbers, not all zero. After some simple
algebra, we obtain

P — 2yz (z — x — y) (z + x) (y — z — x) (y + x)

(z — x — y) (x -f- y) P — 2zx (x — y — z) (x-\ y)

(y — z — x) (y + z) (x — y — z) (x + z) P — 2xy

(x + y)2(y + z)2(z + x)2Ms

where P Zx2 + Exy. We now add row 2 and row 3 to row 1, giving a row of
constant terms, Ex1 — Exy, which can be factored out. Next, we subtract column 2 form
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column 3 and then column 1 from column 2, leadmg to a 2 X 2 determinant Then
addmg the rows together, we fmally obtain

(x + y)2 (y + z)2 (z + x)2 M3 {JJxy}{JJx2 -JJxy}{JJx2 + 3 JJ xy} > 0

with equality tff x y z or two of x, y, z are zero Consequently, (1) and (2) are
vahd with equality tff ABC is equilateral (we are excludmg degenerate triangles)

III. F2 > 0

By just considermg the case r3 0, rx r2 < 0 and (a + b)\c large, it follows that
inequality (3) is not vahd for all real rlf r2, r3 Consequently, we restnct rlf r2, r3 to
non-negative values and replace them by x2, y2, z2, respectively Also, we replace
a, b, c by q + r, r + p, p + q, respectively, where p, q, r are arbitrary non negative
numbers Inequality (3) now takes the form

F2 x* + y4 + z* - 2uy2 z2 - 2vz2 x2 - 2wx2 y2 > 0 (3)'

where

p q r
u 1 v 1 — — — w 1

q + r r + p p + q

Smce F2 is a biquadratic m x, y, z, it follows by a theorem of Hubert [4] that if
F2 > 0, then it can be expressed as the sum of Squares of three real polynomials and

conversely Consequently, our proof of (3)' is based on exhibitmg such a representation

Without loss of generality, we can assume that p > q > r Whence, u < 1,

0 s v, w < 1 F2 can now be expressed in the form

F2 {x2 - vz2 - wy2}2 -f {y2 (1 - w2)1'2 - z2 (1 - v2)1'2}2 + 2Gy2z2

where

G (1 - v2)1'2 (1 - w2)1'2 -u-vw
In order to show that G is non-negative, we consider, separately, three intervals for

u,\e (Cx) u < uQ, (C2) 0 < u < 1 and (C3) uQ < u < 0 The first case (Cx) is the easiest

smce u0 is the negative root of a certain cubic such that u + vw < 0 For (C2), />, £, r
are possible sides of a triangle Thus, we can make the duahty transformation p ß + y,
q y + <x} r oi + ß where a, ß, y > 0 On squarmg out G — 0, we get

l>u2 + v2 + w2 + 2uvw (4)

After a considerable amount of simple algebra, (4) can be expressed m the form

7 4 10

j T? T2 (P,2 - 3 T2) + - P,3 (T, T2 - 9 T8) + — Tx T2 (J,3 - 27 T3)

+ ^-(^i3 TXT2-21T3 9P3)>0

(5)
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where

T^oi + ß + y, T2 ßy + ya + OLß, T3 *ßy

Smce it is well known that

T? >3T2, T?> 27 T3, TXT2>9T3,

inequality (5) is vahd and with equality tff a ß y
For the last case (C3), we resort to a geometrie proof First, we note that u, v, w

satisfy the identity

1 u — 1 u — 1

v — 1 1 v — 1

w — 1 w — 1 1

or equivalently

0

«->-^34{—^i-fc^i- <6>

3-2w 3-2u\ \3-2u
For a fixed ^, permissible values of v, w will then he on the lower branch of the hyper-
bola H 0 which is contained in the unit square 0 < v, w < 1 If we also wish to have

u + vw < 0, then the cntical value of u (denoted by u0) is determined by requirmg
the lower branch of H 0 to be tangent to the positive branch of vw — u (see figure)
u0 is then the negative root of j/ — u 2 (1 — u)j(3 — 2u) or 4u3 — Su2 + u + 4 0

Here, u0 « — 57

In order to show that (4) is vahd for each fixed u m (u0, 0), it suffices to show
that the part of the lower branch of H 0 lymg above the positive branch oivw — u
and within the square 0 < v, w < 1, also lies mside the ellipse (see figure)

E v2 + w2 + 2 u v w — (1 — ti2) 0

The semi-axes of E he on the lmes v + w 0 and their lengths are ]/1 — u and ]/ 1 + u,
respectively
The elhpse is inscribed m the square — 1 < v, w < 1 The positive branch of the
hyperbola v w — u passes through two points of tangency The three curves are
Symmetrie with respect to the lme v w The coordinates of the indicated points are

given by

t-^' M^T'1)'
2 (1 - u)

Uu=]/{l-u)l2, vv= ~^-. Wv y-u/2
o — Z.U

(Uv denotes the abscissa of U, ete
Smce V lies between W and U and Q is to the left of P, our inequality is estabhshed
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E=0

In addition to having equality in (3)' for the case, a b c, x y z, we also
have equality for a degenerate triangle corresponding to P and Q coinciding at (0,1).
For this case, r 0, x y, a q, b p, c p + q.

IV. Triangle inequalities

Numerous triangle inequalities can be obtained from the forms Fx and F2 by
letting rlt r2, r3 be particular functions of the sides, e.g., r± — a, a2, ab, b etc. (r2 and r3
are then chosen by a cylic interchange of a, b, c). Most of these inequalities are not
particularly elegant, e.g.,

abcJJa2+JJ(a + b)a2b2 > 3abcJJab (7)

2a2 b2 c2JJab + JJb* c4 > 3a2 b2 c2JJc2. (8)

However, we can rewrite (3)' into the more appealing form (geometrically)

—r — b2 c2 + —— c2 a2 + —
q + r r + p p

a2 b2 > 8J2 (9)

where A denotes the area of triangle ABC. It is to be noted that if | a \, | b |, | c \ did
not form a triangle, the r.h.s. of (9) would be negative giving a trivial inequality.
In terms of angles, (9) is given by

p esc2 A q esc2 B r esc2 C

q + r r + p p+q
(9)'

There is equality in (9) and (9)' iff A B C n\3, p q r.liwe also allow degenerate

triangles, there is also equality iff _4 B n\2, p q,r 0 (assuming p >q >r).
Inequalities (9) and (9)' generalize the known special case corresponding to p q r
[1, pp. 31, 45].
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If we now let (a', b', c') (a2, b2, c2) and restrict ABC to be an acute triangle,
then a', b', c' are sides of a general triangle of area __T. By virtue of the known inequality,

4 A2 > |/3 A', of Finsler and Hadwiger [1, p. 91] together with (9), gives

*
b' c' + —1— d a' +

Y
a' b' >2 ]/3 A' (10)

q + r r+p p + q

or equivalently

p esc A' q esc B' r esc C£. ___ + 1 + > 1/3 (ioy
q + r r + p p + q

y y }

The last two forms generalize the known special case corresponding to p q r
[2, p. 31, 43].

Other related extensions will be given in a subsequent paper. Also, for other
examples of non-negative quadratic forms and their associated triangle inequalities,
see [5], [6] and the references therein.

Murray S. Klamkin, Ford Motor Company, Dearborn/USA
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A Note on Discontinuous Functions

Let 3 denote the class of real-valued functions defined and everywhere
discontinuous on an interval [a, b]. F. Fricker [1] considered questions concerning the set

$ (/) fx: lim/(y) exists} for / e 3. He asked whether it is possible for H (/) to be dense
y—*-x

in [a, b]. A negative answer to this question was obtained by R. Jeltsch [2]. The pur-
pose of this note is to characterize those sets H for which there exists / e *3 such that
H #(/).

We begin with three lemmas.
Lemma 1. For any real-valued function / defined on [a, b] the set ?/(/) {x:

lim/(y) exists} is of type G$.

Proof. For each x e [a, b] and d > 0 let

co8(x) sup {| f(y) ~f(z)\:0<\y-x\<ö,0<\z-x\<d}
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