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und daher
pU U W)U+ M) U W)=eU)({H{U)+ A + W) /(W)
=oU U W)U U W)+ ip(U)t
¢ H*
tiir alle grossen 4. Wegen
F((U+ M) v W)ekonv (U+ M) U W) < Ht
muss also (U U W) < 0 sein. Andererseits gilt fiir hinreichend grosse 4
U uUWMAHUT W+ A)=eU uW)f(U W)+ MecH*
und
f(U O (W + A)) ekonv (U U (W + M) < H*,

was ¢(U U W) > 0 nach sich zieht. Die Annahme war also falsch, das heisst ¢ ist
definit.

Rolf Schneider, TU Berlin
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Two Non-Negative Quadratic Forms

I. Introduction
In problem E 2348 [1], L. Carlitz has given the inequality
2R1 (ry + 73) = 2(71 + 73) (11 + 75) (1)

where R;, R,, R, and r,, 7,, 73 denote the distances from an interior point of a triangle
ABC to the vertices A, B, C and the sides a, b, ¢, respectively. Coupling (1) with the
known lower bounds R; > (¥, ¢ + 73 b)/a, etc. [2, p. 107], suggests the stronger inequa-

lity
b c c a a b ]
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We shall show that F; > 0 is indeed valid for all triangles A BC and any real values
of 7y, 7,, 3. Then by using the lower bounds b/c + ¢/b > 2, etc., inequality (2) can be
partially strengthened to

b
F=rr+rn+n— {3—— Z—C} - {3— C:a}rsrl

However, here 7,, 7,, 75 are to be arbitrary non-negative numbers.

II.F; =0
A standard way of sliowing F is non-negative is to show that its associated matrix

b% — bc + c? a+b— 3¢ a4+ c— 3b

be 2c 2b
M b+a— 3¢ 2 —ca + a® b+ c— 3a

B 2c ca 2a
c+a— 3b c+b— 3a a? — ab + b?
2b 2a ab

is positive semidefinite. As is well known, F is a non-negative form ¢/ all the principal
minors of M are > 0. The first two leading ones, M, and M, are easy to establish. For

beM,=(b—c)2+bc >0,
and after some manipulation

4abc® My =4c2{) a®— D ab}+ ab{2 D' ab— D a?}.

That M, is non-negative, follows from two elementary triangle inequalities [2, p. 11].
The non-negativity of the remaining 1st and 2nd order principal minors follows by
symmetry.

To simplify the valuation of M; = det M, we make the duality transformation [3],

a=y+z, b=z4x, c=x+y

where x, y, z are arbitrary non-negative numbers, not all zero. After some simple
algebra, we obtain

P—2yz (r—x—%) (242 (y—z2—2) (y+2)

F+y2+2?E+2)2My= | (z—x—y) (x+y) P—2z (x—y—2) (x+y)

(y—2z—2x) (y+2) @x—y—2) (x+2) P—2xy

where P = 2 x% 4 2 xvy. We now add row 2 and row 3 to row 1, giving a row of con-
stant terms, 2 x2 — X' xy, which can be factored out. Next, we subtract column 2 form
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column 3 and then column 1 from column 2, leading to a 2X 2 determinant. Then
adding the rows together, we finally obtain

(6 + 902 (v + 2)* (2 + 2 My = { D]y} { D) * = D)y} { 3/ #* +3 )y} = 0

with equality iff ¥ = y = z or two of x, y, z are zero. Consequently, (1) and (2) are
valid with equality ¢ff A BC is equilateral (we are excluding degenerate triangles).

L. F, > 0

By just considering the case 73 = 0, 7, 7, << 0 and (a + b)/c large, it follows that
inequality (3) is not valid for all real 7,, 7,, 75. Consequently, we restrict 7,, 7,, 75 to
non-negative values and replace them by x2, y2, 22, respectively. Also, we replace
a,b,cby g+ r, v+ p, p + g, respectively, where p, g, r are arbitrary non-negative
numbers. Inequality (3) now takes the form

E =t y4 4+ 24— 2uy? 22 — 2022 4% — 2wa? y® > 0 3)’
where
w—1-_t 1T T
g+ r+p P+q

Since F2 is a biquadratic in x, v, z, it follows by a theorem of Hilbert [4] that if
F, > 0, then it can be expressed as the sum of squares of three real polynomials and

conversely. Consequently, our proof of (3)" is based on exhibiting such a representa-
tion.

Without loss of generality, we can assume that p > ¢ = 7. Whence, # < 1,
0 < v, w < 1. F, can now be expressed in the form

= {#2 — v22 — w2 £ {y? (1 — w?)12 — 22 (1 — 12)12}2 4 2G y2 22
where
G=(1—v)"2(1—w)?—u—w.

In order to show that G is non-negative, we consider, separately, three intervals for
u,i.e., (C;) u < uy, (Cy) 0 <u < 1and (Cy) uy << u << 0. The first case (C;) is the easiest
since #, is the negative root of a certain cubic such that » + vw < 0. For (Cy), $, 4,7
are possible sides of a triangle. Thus, we can make the duality transformation p = §+ 9,
g=1y+ a, r=a-+  where o, 8,y > 0. On squaring out G = 0, we get

1w+ v+ w4+ 2uvw. “4)
After a considerable amount of simple algebra, (4) can be expressed in the form

7 4 10 ]
§T12T2(T12"3T2)+“§“T13(T1T2“ 9T3)+‘§“T17;(T13*277;,)

1
+5 I RT,-215,-9T) 20
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where

Li=a+p+y, Ly=fytyetaf, T;=afy.
Since it is well known that
T12237;, T13227T3, T, =91,

inequality (5) is valid and with equality iff o = 8 = y.
For the last case (C;), we resort to a geometric proof. First, we note that «, v, w
satisfy the identity

4—3u 4—3u 2—u)®

H={” 3—-2u} {w 3——2%} {3—2%} - (©)
For a fixed », permissible values of v, w will then lie on the lower branch of the hyper-
bola H = 0 which is contained in the unit square 0 < v, w < 1. If we also wish to have
u + vw < 0, then the critical value of # (denoted by #,) is determined by requiring
the lower branch of H = 0 to be tangent to the positive branch of vw = — u (see figure).
#q 1s then the negative root of ) — u =2 (1 — u)/(3 — 2u) or 4u® — 8u® + u + 4 = 0.
Here, 4y ~ — .57.

In order to show that (4) is valid for each fixed # in (u,, 0), it suffices to show
that the part of the lower branch of H = 0 lying above the positive branch of vw = — u
and within the square 0 < v, w < 1, also lies inside the ellipse (see figure)

E=v®4+w+2uvw— (1 —u?)=0.

The semi-axes of E lie on the lines v 4 w = 0 and their lengthsare 1 — v and J/ 1 + u,
respectively.

The ellipse is inscribed in the square — 1 < v, w < 1. The positive branch of the
hyperbola v w = — u passes through two points of tangency. The three curves are
symmetric with respect to the line v = w. The coordinates of the indicated points are
given by

P=(—u1), Q=( “ 1),

w—1"
I 21— o
Uv = V(l"‘u)/z’ Vu = “3—&"__ 2::) ’ Wv::l/_u/z

(U, denotes the abscissa of U, etc.).
Since V lies between W and U and Q is to the left of P, our inequality is estab-
lished.
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w
vW=-Uu .
U
W v
7 1
Y%
Q
\\\%
NS
E=0 v=-w

In addition to having equality in (3)’ for the case, a = b= ¢, x =y = 2z, we also
have equality for a degenerate triangle corresponding to P and Q coinciding at (0,1).
For thiscase,» =0, x =y, a=¢q,b=%,c=p + q.

IV. Triangle inequalities

Numerous triangle inequalities can be obtained from the forms F and F, by
letting 7,, 7,, 75 be particular functions of the sides, e.g., 7, = a, a2, ab, b etc. (r, and 7,
are then chosen by a cylic interchange of a, b, ¢). Most of these inequalities are not
particularly elegant, e.g.,

abc ) a?+ D' (a+ b) a® 6% = 3abc D ab, (7)

Za* b4 czzab +Zb4 ct > 3a® b2 02202. (8)
However, we can rewrite (3)' into the more appealing form (geometrically)

g+ r+p P+4q

where 4 denotes the area of triangle 4 BC. It is to be noted that if |a |, | b, | ¢ | did
not form a triangle, the r.h.s. of (9) would be negative giving a trivial inequality.
In terms of angles, (9) is given by

P csc? A g csc® B rcsc C -

4+ + -2 9)’

q-+7r r+p p+q ©)
There is equality in (9) and (9)' +ff A = B = C =n/3, p = ¢ = r. If we also allow degen-
erate triangles, there is also equality iff A = B=mn/2, p = ¢, r =0 (assuming p > q > 7).
Inequalities (9) and (9)’ generalize the known special case corresponding to p =g =7
[1, pp. 31, 45].
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If we now let (a’, ', ¢’) = (a?, b?%, c?) and restrict ABC to be an acute triangle,
then a’, b’, ¢’ are sides of a general triangle of area A’. By virtue of the known inequal-
ity, 4 42 > Y3 A’, of Finsler and Hadwiger [1, p. 91] together with (9), gives

? bl q !’

¢’ ¢ a + a'b =234 10
qg+r + r+p p+4q V (10)
or equivalently
csc A’ csc B’ r ¢csc C’
P . 4 oo > V3. (10)’
q+r r+p p+yq

The last two forms generalize the known special case corresponding to p = ¢ = 7»
(2, p. 31, 43].

Other related extensions will be given in a subsequent paper. Also, for other
examples of non-negative quadratic forms and their associated triangle inequalities,
see [5], [6] and the references therein.

Murray S. Klamkin, Ford Motor Company, Dearborn/USA
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A Note on Discontinuous Functions

Let J denote the class of real-valued functions defined and everywhere discon-
tinuous on an interval [a, b]. F. Fricker [1] considered questions concerning the set
W) ={x: 31)1_1;1’}‘ f(v) exists} for fe J. He asked whether it is possible for #(f) to be dense

in [a, b]. A negative answer to this question was obtained by R. Jeltsch [2]. The pur-
pose of this note is to characterize those sets H for which there exists f € J such that
H = U(f).

We begin with three lemmas.

Lemma 1. For any real-valued function f defined on [a, b] the set H(f) = {x:
}gri {(y) exists} is of type G;.

Proof. For each x € [a, b] and § > 0 let

wa(x) =sup{| fy) = f(&) |: 0 < |y —x| <4, 0<|z—x]| <$}
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