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G. D. CHAKERIAN: Minimum Area of Circumscribed Polygons 111

Proof. Let T;, be a simplex of minimal volume containing K. By the theorem of
Day [2], the centroids of the facets of T, touch K. Let ¢ be the simplex whose vertices

are those centroids, and let T be the simplex parallel to # and circumscribed about K.
Then t = (n") T,and T > T, so

Kr > p-1T > (n——n(n—l) Tg“l) (TO) s (11)
so Ty < (n"—1) K, as we wanted to prove.

G. D. Chakerian, University of California, Davis
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Hypo-Eulerian and Hypo-Traversable Graphs

Introduction

If a graph G does not possess a given property P, and for each vertex v of G the
graph G — v enjoys property P, then G is said to be a hypo-P graph. Recently,
studies have been made where P stands for the graph being hamiltonian, planar, and
outerplanar (e.g., see [3]). Here we obtain a characterization of hypo-eulerian and
hypo-randomly-eulerian graphs, and investigate in this respect some of the other
concepts arising out of Euler’s solution of the classical Kénigsberg Seven Bridges
Problem.

Preliminaries

Following the terminology of [2], a graph will be finite, undirected, without loops
or multiple edges. A walk of a graph G is an alternating sequence v, ¢,, v, €5, Vs, . . .,
U,_1, €, U, of vertices and edges of G, beginning and ending with vertices and where
theedgee, = v, _,v;fori =1, 2,...,n Thisis a vy — v, walk, and is usually denoted
Vg Uy Vg . . . U,; it is closed if vy = v, and open otherwise. A walk is a ¢radl if all its edges
are distinct; it is a path if all its vertices are distinct. A closed trail is a circuit and a
circuit on distinct vertices is a cycle. A cycle on p vertices is denoted C,, and Cjy is
called a triangle.

If for every two distinct vertices # and v of a graph G there exists a u — v path,
then G is connected. A component of G is a maximal connected subgraph of G. A vertex
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v is a cutpoint of G if G — v has more components than G. An eulerian circuit of a
graph G is a circuit which contains all the vertices and edges of G, and an eulerian
trail of G is an open trail which contains all the vertices and edges of G; in either case
G has to be connected. We will assume that an eulerian circuit or an eulerian trail
has at least one edge in it.

The number of edges incident with a vertex v is the degree of v which is written
as deg v. Let 6(G) = mii)n deg v and 4(G) = max deg v. A graph G is regular of degree »
(or r-regular) if §(G) = A(G) = r. A cubic graph is 3-regular. We use (G) and ¢(G)
(often simply p and ¢q) for the number of vertices and edges of a graph G. The #rivial
graph has p = 1 and the complete graph K, on p vertices has ¢ = p (p — 1)/2. The
complete bipartite graph K(m, n) has its vertex set partitioned into nonempty sets
V, and ¥, containing m and # elements respectively such that »v is an edge of K (m, =)
ifandonlyifue V,andveV,,s +j.

An edge x = uvof a graph H is said to be subdivided if it is replaced by a new
vertex w together with the edges # w and w v. A graph G is homeomorphic from a graph
H if G can be obtained from H by a finite sequence of such subdivisions. Two graphs
G, and G, are homeomorphic if there exists a graph G such that G, and G, are both
homeomorphic from G.

Let 6(G) (§(G)) consist of the vertices of G having their degrees odd (even). Let
the number of elements in 6(G) be called the euler number of G, and let this be written
as €(G). Then g(G) is a nonnegative even integer.

Hypo-eulerian Graphs

A graph G on p > 3 vertices is defined to be eulerian if it possesses an eulerian
circuit. The next result is well known.

Theorem (Euler). Let G be a connected graph. Then G is eulerian if and only
if € (G) = 0.

By definition, a graph G is hypo-eulerian if G is not eulerian, but the graph G — v
is eulerian for each vertex v of G.

Theorem 1. Let G be a connected nontrivial graph. Then G is hypo-eulerian if
and only if G = K,,, n > 2.

Proof. Clearly, € (K,,) =2n >0 and € (K,, — v) = € (K,,_,) = 0 imply the
sufficiency part. So let G be a nontrivial connected hypo-eulerian graph. As G — v
is eulerian, $(G) > 4.

First we show that every vertex of G must be odd. Assume that £(G) + ¢, and
let # € §(G). Now # must be adjacent with only odd vertices otherwise € (G — #) > o.
On the other hand if v € 6(G), then for the same reason v must also be adjacent with
only odd vertices. This contradicts §(G) + ¢. Hence $(G) = € (G) = 2 » for some
n = 2.

Secondly, we assert that G is complete. For if not, there exist two nonadjacent
odd vertices # and v in G. Now the vertex v has odd degree in G — % and contradicts
€ (G — u) = 0. This completes the proof.

If G is an eulerian graph with 4 > 3 and v is any vertex of G, then G — v neces-
sarily contains odd vertices and must be noneulerian. This we mention next.
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Theorem 2. Let G be a connected nontrivial graph. Then G is hypo-noneulerian
if and only if G is eulerian.

Ore [4] called an eulerian graph G randomly eulerian from a vertex v if every trail
of G beginning at v can be extended to an eulerian circuit of G; a graph G is randomly
eulerian if it is randomly eulerian from each of its vertices. Ore characterized graphs
which are randomly eulerian from a vertex v as those graphs in which » belongs to
every cycle of G. This leads to the result that G is randomly eulerian if and only if G
is a cycle.

Theorem 3. A graph G is hypo-randomly-eulerian if and only if G = K,.

Proof. Since a cycle is obtained by deleting any vertex of K, this graph certainly
has the desired property. Conversely, let G be a hypo-randomly-eulerian graph.
Observe that in view of Theorem 2, G and G — v cannot be both eulerian for any ver-
tex v. Hence G is necessarily hypo-eulerian, and by Theorem 1, G = K,, for some
n > 2. Moreover, since G — v must be a cycle for each vertex v of K, ,, we conclude
that ¢ = K,.

Chartrand and White [1] proved that if G is an eulerian graph which is randomly
eulerian from £ vertices, then £ = 0, 1, 2 or $(G), and following this we will denote a
graph which is randomly eulerian from % vertices as an RE(k) graph. A study of
hypo-RE(R) graphs is now in order. Let G be a graph which is not RE(k), but let
G — v be randomly eulerian from % vertices. Then, as stated earlier, G must be a
hypo-eulerian graph with the additional property that for all v, G — v is an RE(k)
graph. So by Theorem 1, G = K,,and G — v = K,,_;,n = 2. When n > 3, for every
vertex # of G — v we can find a cycle, namely a triangle, which avoids #, and so
G — v is an RE(o) graph. The case n = 2 yields that G — v is an RE(p) graph. Also,
G — v is not an RE(k) graph for 2 =1 and %k = 2. These remarks lead to the next
result where we note that the hypo-RE(p) graphs have already been described in
Theorem 3.

Theorem 4.
(a) A graph G on p > 4 vertices is hypo-RE (o) if and only if G = K,,, n > 3.
(b) No graph is hypo-RE(1) or hypo-RE(2).
(c) A graph G on p > 4 vertices is hypo-RE(p) if and only if G = K.
We conclude this section by stating a result analogous to Theorem 2.
Theorem 5. A graph G is hypo-nonRE(k) if and only if G is an RE(k) graph.

Hypo-traversable Graphs

A graph G on p > 2 vertices is said to be fraversable if G has an eulerian trail,
i.e., G has an open trail which contains all the vertices and edges of G (and in view of
the next result, this trail begins at one of the odd vertices and ends at the other).

Theorem (Euler). Let G be a connected graph. Then G is traversable if and only
if € (G) = 2.

Let G be a hypo-traversable graph. Then € (G) * 2, and € (G — v) = 2 for each
vertex v of G. It is clear that G is a block, and 4(G) > 2. Also, € (G) is even and
0 < € (G) < p. From the first possible value we readily get the following.
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Theorem 6. Let G be any connected graph which has euler number 0. Then G
is hypo-traversable if and only if G is a cycle.

Proof. The sufficiency is immediate, and for the necessity we note that € (G) = 0
implies that V(G) = &(G). Now € (G — v) = 2 for any vertex v of G gives deg v = 2.
By connectedness, G has to be a cycle.

Now let € (G) = 2m, m > 2, and let G be hypo-traversable. Let # € £(G) and
v € 0(G). Then it can beseenthatdegu =2m — 2,2mor2m + 2and degv = 2m — 3,
2m — 1 or 2m 4 1, otherwise € (G — w) =+ 2 for some vertex w of G. This fact is
useful in considering individual cases. Should m = 2, the possible values of deg v
will be 3 or 5 since §(G) = 2. It can be verified that for p < 5, cycles are the only
hypo-traversable graphs. Figure 1 shows all graphs on 6 vertices which are hypo-
traversable.

LD O
AV

Figure 1

Hypo-traversable graphs on 6 vertices.

The preceding theorem dealt with the case when the graph had all vertices even.
The next result treats graphs possessing no even vertices.

Theorem 1. Let G be any connected graph having euler number € (G) = p(G) > 6.
Then G is hypo-traversable if and only if G is regular of degree p — 3.

Proof. Here &(G) = ¢ and p = 2m = € (G). By the above remarks, every vertex
of G is odd and has possible degrees 2m — 3 or 2m — 1. But if any vertex is adjacent
with all the other p — 1 vertices, its deletion gives an eulerian graph. The necessity
now follows.

Conversely, let G be a connected (p — 3)-regular graph and € (G) = $(G) = 6.
Then € (G — v) = 2 for all v, and the proof is complete.

Theorem 8. Let G be a connected graph having euler number € (G) = $(G) — 1,
and let $(G) = 5. Then G is hypo-traversable if and only if the even vertex «# of G
has degree p — 3, the vertices @ and b that are nonadjacent with » have degree p — 4,
and every other vertex has degree p — 2.

Proof. Let &(G) = {u}, and assume that G is hypo-traversable. Since every
vertex adjacent with # becomes even in the traversable graph G — u, we need
degu = p — 3. Let a and b be the vertices nonadjacent with %, and let v € 6(G) — {a, b}.
Now the traversable graph G — w contains exactly 2 odd vertices, for each w € V(G).
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Hence deg v = p — 2 and deg a = deg b = p — 4. For the sufficiency we note that
€ (G) = 4, and by hypothesis, € (G — w) = 2 for each vertex w of G.

It is possible that a complete classification of hypo-traversable graphs may get
involved with discussing individual cases, and this suggests scope for further research.

Let G be a hypo-nontraversable graph, i.e., € (G) = 2 and € (G — v) # 2 for
each vertex v. Moreover, since it is meaningful to require that G — v be connected,
we further assume that G has no cutpoints and p > 4 (so that §(G) > 2). Designate
the two odd vertices of G as @ and b. If a b is not an edge in G, then € (G — a) and
€ (G — b) are 4 or more. On the other hand, if 4 and b are adjacent, we must have
deg a > 5 and deg b > 5. Now let v € §(G). This imposes the following restrictions:
If deg v = 2, then v is adjacent with either both or neither of 4 and b; if deg v = 4,
then v is not simultaneously joined to both a and . These present a set of necessary
conditions for G to have the desired property, and it can be verified that they are
also sufficient.

Theorem 9. Let G be a block with p > 4. Then G is hypo-nontraversable if and
only if 6(G) = {a, b} and

(i) abeE(G) = dega = 5and degd =5,
(ii) degwv =2 = v is joined to both or neither of a, b, and
(i) degv =4 = v is not joined to both a and b.

In [1] a traversable graph G is called randomly traversable from a vertex v if every
trail in G with initial vertex v can be extended to an eulerian trail of G. Clearly, a
traversable graph can be randomly traversable from %2 = 0, 1 or 2 vertices, and we
may, as before, denote this class of graphs as R7T(k), where RT(2) will refer to the
class of randomly traversable graphs. It was also proved in [1] that if 4 and & are the
two odd vertices of a traversable graph G, then G is randomly traversable from q if
and only if every cycle of G contains b. Moreover, a graph G is in RT(2) if and only if
the two odd vertices of G lie on every cycle of G. This suggests the problem of study-
ing hypo-RT (k) and hypo-nonRT (k) graphs.

We conclude by presenting a complete classification of RT(2) graphs.

Theorem 10. Let G be a traversable graph with 6(G) = {a, b}. Then G is randomly
traversable if and only if G is homeomorphic from K,, K (2,2m — 1) or K(2, 2m) + a b,
where m > 1.

Proof. It is obvious that the graphs described are randomly traversable. To
prove the converse, first we note that if deg a = 1, then any b — a path must be G
itself, otherwise there exists a cycle which avoids a or b. Thus, deg b = 1, and the
graph G is homeomorphic from K,. So we assume that each of a and b has degree at
least 3.

Let v be any vertex of G other than a or b. Since G is connected, there exist
v — a and v — b paths. Clearly these paths have v as their only common vertex
otherwise some cycle of G avoids a or b. Moreover, the union of these paths gives an
a — b path which contains v. With every vertex v € V(G) — 6(G) we can associate
an a — b path P(v) such that P(v) contains v. Let us consider the collection of all
a — b paths, where, for obvious reasons, any two paths are disjoint, i.e., the only
vertices common to them are @ and b. So P(v) is unique, and the union of all these
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paths must be G itself. We therefore conclude that every vertex other than a and &
has degree 2, and deg 4 = deg b is odd. Also, if 4 and b are adjacent, then G — ab is
homeomorphic from K(2,2m); and if a, b are nonadjacent, then G is homeomorphic
from K (2, 2m — 1), where m > 1.

S.F. Kapoor?l), Western Michigan University, USA
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Kleine Mitteilungen

New Quadratic Forms with High Density of Primes

Let p,,;, be the smallest prime contained in a quadratic form of the shape
f(x) = Ax* + Ax — C and let n,;,, be the number of initial consecutive primes of f(x),
then, by means of a CDC 6400 coniputer, all f(x) = 4 42 + 4 x — C were investigated
for A < 10, C < 2.105, and 9,,;, > 47. In Table 1, the number below C is the number
of all primes of f(x) for x < 100, and $,,;, is the number in parentheses.

For each form #% 4+ x — C we have also a form 992 + 9y — (C — 2), because the
substitution x = 3y + 1 transforms x% + x — C into 9y% + 9y — (C — 2); hence, each third
term of x% + x — C (starting with the second) belongs to9y%+ 9y — (C — 2). Similarly,
for each form 242 — C we have also a form 822+ 82 — (C — 2), because the substitution
x = 2z + 1 transforms 2% — C into 822 + 8z — (C — 2); hence, each second term
of 2x2 — C (starting with the second) belongs to 8 22 + 8 2 — (C — 2). For the forms
2 x2 — 119131 and 2 x2 — 186871, related to the forms with A = 81in Table 1, we have
64 and 61 primes, respectively, for x < 100.

Table 1 gives the impression that there might be no forms with 4 = 4. This is
not so. In a test run with 4 < 10, 108 — 5000 < C < 108, and p,,;, > 47, the forms
x% + x — 99995659, 9 x% + 9 x — 99995657, and 4 x%2 4+ 4 x — 99996937 were discovered,
all with ¢,,;, = 53.

The form x2 + x — 53509 with p,,;, = 61 is due to N.G. W. H. Beeger [1] in 1938,
the forms 22 + x — 90073 with p,,;, = 53 and #% + x — 169933 with p,,;, = 59 are due
to the author [2] in 1967.

Two hundred years ago, Euler published his famous quadratic form x% + x 4 41
with ., = 41 and #,,, = 40. This form was believed to have the highest density of
primes of all quadratic forms 4 2% + B x + C discovered till now. Many forms were
found with #,,,, > 41 and the second differences greater than 2; but the corresponding
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