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Überdeckung der Ebene durch inkongruente Kreise
(Eme Bemerkung zu einer Arbeit von Fejes Töth und Molndr)

Fejes Töth und Molnar schätzten in [2] die Dichte eines die Euklidische Ebene
vollständig überdeckenden Systems von Kreisen, deren Radien r% beliebig aus einem
Intervall (a, b) der reellen Achse smd, nach unten ab und vermuteten eme explizite
Darstellung ihrer Abschätzung, welche von A Florian fur den Fall, dass die Radien rt
von nur zweierlei Grossen smd, bestätigt wurde (vgl [3]).

Im folgenden wird gezeigt, dass man aus der m [2] angegebenen Abschätzung die
explizite Darstellung einer unteren Schranke fur die Überdeckungsdichte eines die
Ebene bedeckenden Kreissystems gewinnen kann, bei dem abgesehen von inf rt>0
und sup rt < oo keinerlei Voraussetzungen uber die Grosse der Kreisradien rt gemacht
werden, bei dem aber die Lage der Kreise zueinander einer Beschrankung unterworfen
wird In jedem Dreieck, welches durch die Mittelpunkte dreier Kreise, die mindestens
einen Punkt gemeinsam haben, aufgespannt wird, sei kein Winkel kleiner als ein
Winkel co (0 < co < nß)

Wir werden beweisen, dass fur die Dichte D(oj) eines solchen - kurz co-Uber-

deckung genannten - Kreissystems gilt

^, s oj (n — 2oj) t ,.x2)(co) > —_ tg co + co cotg co (1)
71

und da^s fur co — nß, oj n/A und oj nß die angegebene Schranke scharf ist.
Gleichheit tritt jeweils dann em, wenn die Kreisradien von höchstens zweierlei
Grossen sind und sich immer zwei «grosse» und em «kleiner» Kreis in symmetrischer
Lage zueinander befinden

Fig 1 Fig 2
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Zum Beweis modifizieren wir zunächst die in [2] angegebene Schranke S(h) wie

folgt: Die (wie sich zeigen wird, nur von co abhängige) Funktion S(oj) sei das

Minimum der Dichten dreier Kreise in dem durch ihre Mittelpunkte aufgespannten
Dreieck, erstreckt über alle Tripeln von Kreisen mit beschränktem Radius und der

Eigenschaft, dass die drei Kreise einen gemeinsamen Randpunkt, aber keinen
gemeinsamen inneren Punkt haben und dass in dem durch ihre Mittelpunkte
aufgespannten Dreieck kein Winkel kleiner als oo auftritt. An Hand des von Fejes Toth
und Molnar in [2] gegebenen Beweises für die Abschätzung D(h) > S(h) kann man
sich nun unschwer überlegen, dass D(oj) > S(co) ist. Man braucht bloss zu beachten,
dass die Dichte dreier Kreise in einem Dreieck bei festgehaltenem Dreieck sicherlich
abnimmt, wenn man die Radien von einem der drei Kreise derart verkleinert, dass

die drei Kreise einen gemeinsamen Rand-, aber keinen gemeinsamen inneren Punkt
haben und dass die Kreisradien in einer co-Überdeckung beschränkt sind.

Fig. 3

Um nun S(oj) explizit zu bestimmen, betrachten wir die Dichte ö dreier Kreise
mit dem Radien rlf r2 und rz, welche einen gemeinsamen Randpunkt X, aber keinen

gemeinsamen inneren Punkt haben, in dem durch ihre Mittelpunkte Ov 02 und 03

aufgespannten Dreieck A mit den Winkeln oc, ß, y. 0. B.d.A. sei a < ß < y, und die

Länge der Dreiecksseite Ox 03 sei 1. Legen wir nun etwa das Dreieck A derart in ein

rechtwinkeliges kartesisches Koordinatensystem, dass die Seite Ox 02 auf die Abszisse

zu liegen kommt, und halten wir die Punkte 0lt 02 und 03 fest und variieren den

Punkt X, so sieht man sofort ein, dass die Dichte d am kleinsten ist, wenn für die

Koordinaten x, y von X gilt

1 / siny \ y
•=—(/? -T-£- + y cosa y —

n \ smß / n
sina. (2)

Wählt man nun die Koordinaten von X gemäss (2), drückt rlf r2, r3 und die Fläche

von A als Funktionen der Winkel a und ß aus und setzt in den Quotienten für die
Dichte d ein, so kann man nach einer etwas mühsamen Rechnung für den minimalen
Wert <Jx(a, ß) von d den folgenden Ausdruck erhalten:

(5i(a, ß) — (a (n - a) cotga + ß (n - ß) cotgß
n

-(* + fl)(n-*-ß) cotg(a + ß)).

(3)
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Nun halten wir a fest und zeigen, dass ö^ol, ß) eme zunehmende Funktion von ß ist
Sei f(x) x(n-x) cotgx Gemäss (3) ist dann ^(a, ß) n-1 (/(a) + f(ß) + f(y))

und daher ddjdß n-1 (f'(ß) - f'(y)) (- /' Ableitung von / nach x -) Da /"(*)
2 (cotgx) h(x) mit

7/N # JT — # JT — 2 X
h(x) - 2

sm# sm (n — x) sm (n — 2 x)

und, wie man sich leicht überzeugt, die Funktion h(x) im Intervall 0 < x < n/2
negativ ist, ist f'(x) fur 0 < x < n/2 eme abnehmende Funktion von x Da ferner
wegen f(x) — f (n — x) gilt f(x) /' (n — x), erhalten wir, falls y < n/2 ist

und falls y > n/2 und daher a + ß < n/2 ist

~ - (f'(ß) -/'(*- Y)) * ~ (/' (« + 0 - /' (« + W 0

Also ist ddx/djS m jedem Fall > 0

Nun überlegen wir uns noch, dass die Funktion d2(a) 5x(a, a) eme zunehmende
Funktion von a ist, woraus dann die Ungleichung (1) folgt

Gemäss (3) ist <32(a) - nr1 (2/(a) + f (n ~ 2 ol)) Daher gilt

^=Bl(/'(a)-/'(w-2«))
du. n

Wie oben aber sieht man, dass /'(a) — f (n — 2ol) > 0 und daher ^ <52/^ a > 0 ist
Abschliessend geben wir fur oj tt/6, co tt/4 und co ^;/3 co-Überdeckungen an,

fur die m (1) das Gleichheitszeichen gilt (Siehe Fig 1, 2 und 3)

Dazu beachten wir, dass in jenem Fall, m dem die Dichte d den minimalen Wert
<52(oc) annimmt, gilt rx r2 > r3, und zerlegen sodann fur co n/6, n/4 und nß die
Euklidische Ebene jeweils derart m em Mosaik M aus kongruenten, gleichschenkeligen
Dreiecken A mit den Basiswinkeln oj, so dass in jedem Eckpunkt von M entweder nur
Spitzen oder Basisecken zusammenstossen Legen wir nun in jedem Dreieck A um
die Basisecken zwei Kreise mit den Radien rx und um die Spitze einen Kreis mit dem
Radius rs, wobei wir rx und r3 derart bestimmen, dass fur die Dichte der drei Kreise

in A gilt d 62(oj), so erhalten wir sichtlich eme co-Überdeckung, fur die D(co) S(oj)
ist (Vgl hierzu [4], S 399) D Dorninger, TH Wien
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