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UngelGste Probleme

Nr. 56. Wir stellen die folgende Frage: Lisst sich ein eigentlicher Eikérper des
gewohnlichen Raumes durch drei paarweise aufeinander orthogonal stehende Ebenen
in acht volumgleiche Teile zerlegen ?

Es ist zu bemerken, dass die Existenz solcher Achtelungen durch drei Ebenen,
die aber die Orthogonalitatsbedingung nicht notwendigerweise erfiillen, bereits sicher-
gestellt worden ist. Vgl. hierzu die Note «Simultane Vierteilung zweier Kérper» des
Aufgabenstellers, Archiv der Mathematik 77, 274-278 (1966), Seite 274. Dort ist
ibrigens ersichtlich, dass eine zweiparametrige Schar derartiger Achtelungen zur
Verfiigung steht, die eventuell eine solche enthalten diirfte, die unsere Bedingung
erfiillt.

Die vorausgesetzte Konvexitdt des Koérpers, der aber positives Volumen auf-
weisen muss, ist hier kaum wesentlich, doch konnte sie vielleicht die erforderlichen
Schliisse vereinfachen.

Man beweise oder widerlege die in Frage stehende Aussage.

H. Hadwiger

Nachtrag zu Nr. 53

Berichtigung zur Arbeit « Uber geschlossene Raumkurven ohne einbeschriebenes
Parallelogrammy», El. Math. 28, 14 (1973).

Wie die Herren P. Krauchthaler und T. Zamfirescu bemerkt haben, sind den
angegebenen geschlossenen Raumkurven doch Parallelogramme einbeschrieben. Das
Problem ist also weiterhin offen. G. Ewald

Kleine Mitteilungen

Eine Bemerkung zu total beschrinkten Mengen

Im weiteren sei (R, d) ein fester metrischer Raum und I: = [0,1]. Jede Teilmenge
von R, die sich als das Bild einer stetigen Abbildung von I in R darstellen ldsst
(= Peanosche Teilmenge von R), ist total beschrinkt. Wir geben hier eine weitere
Klasse von Abbildungen an, die dieselbe Eigenschaft besitzt.

Es sei E die Menge aller endlichen Teilmengen von I, wobei wir annehmen, dass
fiir jedes y: ={t1,2,, . . . , t,} € E stets t; <, <.+ <t,ist. Fiir jede (nicht notwendig
stetige) Abbildung f: I — R setzen wir

vy(y): = 2 a [f(t:), (i 11)] (y € E)
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und

L(f): = sup vy(y) ;

veE

f heisst rektifizierbar, wenn L(f) < oo ist.

Lemma. Jede Menge Q C R, die sich als Bild einer rektifizierbaren Abbildung
von I in R darstellen ldsst (= rektifizierbare Teilmenge von R), ist total beschrinkt.

Bewess. Ist Q nicht total beschriankt, so gibt es ein 7, > 0 mit der folgenden
Eigenschaft: Zu jeder natiirlichen Zahl m gibt es Punkte ¢, ¢, . . . , ¢,, € Q mit

m
9j¢ U B(g;, 7o) l<7=<m;
=1
ixi
d.h., es ist d(g;, ¢;) = 7, fiir © + 7. Dabei ist B(g, 7) die abgeschlossene Kugel mit dem
Mittelpunkt ¢ € R und dem Radius » > 0. Fiir jede Abbildung f: I — R mit f(I) = Q

ist somit v, unbeschrinkt und daher L(f) = oo. Q kann daher nicht rektifizierbare
Teilmenge von R sein. q.e.d.

Anmerkung. Dieses Lemma verallgemeinert Lemma 2 in [2] und beantwortet
zugleich eine dort noch offen gebliebene Frage im positiven Sinn.
Zum Abschluss formulieren wir das folgende

Problem. Man charakterisiere die rektifizierbaren Teilmengen aus R durch
metrische Eigenschaften.
MaW., welche metrischen Eigenschaften muss eine total beschrinkte Teilmenge
@ von R besitzen, so dass eine Abbildung f: I — R mit f(I) = Q existiert, fiir die v
beschriankt ist. Das Vorbild zu dieser Fragestellung liefert der bekannte Satz von
HauN-MAzUrkIEWICZ (z.B. [1], 337), der eine rein fopologische Charakterisierung
der Peanoschen Teilmengen eines topologischen Hausdorffraumes angibt
R.Z. Domiaty, Graz.
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Aufgaben

Aufgabe 673. Let @ denote a permutation of Z, = {1, 2, ..., n} and let F(®)
denote the number of fixed points of @. Show that

3 (F@)=n' 4, (©0<k<n),

where 4, is the number of partitions of Z, and the summation is over all permuta-
tions of Z,. L. Carlitz and R. A. Scoville, Durham, N. C., USA
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