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Anhang (Beweis des Lemmas). Es seien qlt q2, die Primzahlen mit qt — 1

(mod p). Nach dem Dirichletschen Satz gilt y]q~x oo. Somit divergiert die Reihe

2Jvt mit vt (qt — 1) q~2. Das unendliche Produkt II (1 — vt) strebt daher gegen Null.
Man kann also rj > 0 beliebig und r so gross wählen, dass

fl (1 - < r,ß (11)
t~l

r
Wenn für irgend ein iqt \ n und q2fn gilt, so folgt a(n) 0 (mod ^). Nun sei Br= JJ qx-

* i
Wenn für ein u in 1 < u < B2 und ein i < r qt\ u und #f -f w gilt, dann folgt aus
w w (mod B2), dass a(n) 0 (mod p). Für die Anzahl der Restklassen u (mod B2),
die diese Eigenschaft m'c/^ haben, erhält man sofort aus dem Sieb des Eratosthenes
den Ausdruck

"•¦A(l-Lir)-
der nach (11) < 0,5 rj B2Y ist. Daher ist für x > x0 (rj, r) die Anzahl der Zahlen n < x
mit o(n) =£ 0 (mod p) kleiner als

0,5 r]B2r-x B;2 + 0,5 r\B2<r\x. (12)

Da (12) für jedes rj > 0 gilt, ist der Beweis fertig. P. Erdös

Irreduzible Polynome als kombinatorische Figuren

Der folgende Beitrag behandelt ein Abzählproblem aus der klassischen Algebra,
das erstmals von Gauss gelöst worden ist. Gelegentlich taucht es auch in der neueren
Literatur wieder auf (Vgl. [1] und [2]). Mit der Darlegung der folgenden Lösung soll
ein Einblick in die modernen Methoden der abzählenden Kombinatorik vermittelt
werden.

1. Die Problemstellung

Die endlichen Körper oder Galois-Felder werden in der algebraischen Literatur
meist damit abgetan, dass an einer geeigneten Stelle ein kurzer und eleganter Existenzbeweis

eingeflochten wird. Die neueren Entwicklungen in der sogenannten finiten
Mathematik1) bringen es mit sich, dass die Galois-Felder mehr und mehr explizit
benötigt werden. So kann zum Beispiel auf Grund einer Darstellung des Galois-
Feldes GF(pn)2) die endliche Desarguessche affine Ebene von der Ordnung s pn

leicht konstruiert werden. Damit im Zusammenhang steht die Aufgabe, orthogonale
lateinische Quadrate von der Ordnung s pn zu finden. An lateinischen Verteilungen

x) Im angelsächsischen Raum treffender als Combmatorial Mathematics bezeichnet.
2) p ist eine Primzahl, n eine beliebige natürliche Zahl.
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ist der Statistiker sehr interessiert; er verwendet sie gelegentlich bei der Planung von
Versuchen.

Um eine Darstellung des Galois-Feldes GF(pn) zu erhalten, kann man vom
Polynomring über dem Restklassenkörper mod p ausgehen. Man greift aus dem
Polynomring über GF(p) ein irreduzibles Polynom vom Grad n heraus und betrachtet
dann die Restklassen in bezug auf dieses Polynom. Wir wollen dieses an sich elementare

Konstruktionsverfahren an einem Beispiel genauer verfolgen.
Es soll etwa das Galois-Feld GF(2S) gewonnen werden. Ausgangsbasis ist der

Restklassen-Körper GF(2). Seine beiden Elemente seien mit 0 (Nullelement) und
1 (Einselement) bezeichnet. Ein irreduzibles Polynom 3. Grades mit Koeffizienten aus
GF(2) ist

g(x) xz 4- x 4- 1 •

Wegen g(0) 1 und g(l) 1 lässt sich nämlich kein Linearfaktor abspalten. Die
Elemente von GjF(23) sind nun die Polynome

neue Bezeichnung

0 a0

1 «i
X oc2

x + 1 a3

X2 a4

X2 +1 a5

X2 + X a6

X2 + X + 1 oc7

<x0 ist das Nullelement, oc, das Emselement.

Für die Summe und das Produkt von Polynomen mod g(x) erhält man leicht die
folgenden Verknüpfungstafeln:

e a0 «i a2 *3 a4 a5 a6 <x7

«0 a0 <*i <*2 <*3 «4 a5 a6 a7

«1 % Oq <*3 «2 *5 a4 a7 a6

a2 <*2 <x3 «0 «1 a6 a7 cc4 «5

as a3 a2 «1 a0 a7 a6 <*5 a4

<x4 oc4 <*5 <*6 <x7 «0 ai a2 «3

«5 «5 <*4 <x7 a6 «i *o a3 «2

<*6 oc6 0C7 <x4 «5 «2 <*3 «0 «1

a7 oc7 «6 a5 a4 «3 «2 «i a0

O «i a2 a3 a4 «5 «6 a7

<*i «i a2 a3 a4 «5 ae a7

a2 <*2 a4 «6 «3 «1 «7 <*5

a3 a3 a6 «5 <*7 a4 <*i «2

a4 a4 <*3 a7 a6 a2 <*6 «i
<*5 «5 «i a4 «2 a7 a3 a6

a6 a6 oc7 <*i a5 «3 «2 «4

a7 <x7 a5 a2 «1 «6 <x4 a3

Allgemein ist die Konstruktion von GF(pn) möglich, sobald ein irreduzibles
Polynom n-ten Grades über GF(p) bekannt ist. Es existiert stets ein solches Polynom.
Wir stellen uns nun die Aufgabe, ihre Anzahl zu bestimmen.
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Ein Polynom n-ten Grades über GF(p)

g(x) an xn 4- an_1 xn~x 4- + ax x 4- a0

heisst genormt, wenn an 1 ist. Im Lichte unserer Köprer-Erweiterungen smd natürlich

nur die verschiedenen genormten irreduziblen Polynome n-ten Grades von Interesse.

Wir wollen daher das Abzahlproblem wie folgt präzisieren: Es soll die Anzahl
der genormten irreduziblen Polynome n-ten Grades über dem Restklassen-Korper GF(p)
ermittelt werden. Diese Anzahl wird anschliessend mit fn bezeichnet.

2. Ein Satz über abzählende Potenzreihen

Es sei F eine abzählbare Menge von kombinatorischen Figuren

F {01,02,03, }

wobei der Figur 0t die nicht-negative ganze Zahl mx als Index zugeordnet ist. Die
formale Potenzreihe in der Unbestimmten z

<p(*)=Z
1?

heisst dann die abzählende Potenzreihe der Figurenmenge F.

Beispiel: Mit einer bestimmten Sorte von 10-Rappen-Briefmarken werde die
Figurenmenge

*-{-.QDQDDD }

gebildet. Das erste Zeichen in der Klammer kennzeichnet die sogenannte leere Figur,
die gelegentlich sehr zweckmässig ist. Hat eine Figur in B den Frankatur-Wert
lOn Rappen, so wollen wir ihr den Index n zuordnen. Dann gehört zur Figurenmenge
B offenbar die abzählende Potenzreihe

ß(z) 1 + z + z2 + • •

1-z
Wir betrachten jetzt zwei Figurenmengen

F1^{01,02, ....} und F2 {Vl,yf, ....}.
Wird der Figur <f>t der Index mt, der Figur ipj der Index n3 zugeschrieben, dann gehören
zu Fx und F2 die abzählenden Potenzreihen

Fx Ft

Aus Ft und F2 lässt sich nun die neue Figurenmenge

Fx x F2 {(*„ %)/0t eFtAWje F2}

ableiten. Gibt man darin der Figur ((f>v y)j) den Index mt + nJf so gilt

JJ^+n, t£z*»t\ (2Jzni)
FtxFt \Ft / \Ft /
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d. h. die Figurenmenge F Fx X F2 hat die abzählende Potenzreihe

<p(z) cp^z) • <p2(z)

Daraus kann man den folgenden Satz über abzählende Potenzreihen entnehmen.

Satz: Haben die Figurenmengen Fx und F2 die abzählenden Potenzreihen (px(z) und
<p2(z) und ist der Index der Figuren bei der Paarbildung additiv, dann hat die Figurenmenge

Fx x F2 die abzählende Potenzreihe qjx(z) • y2(z).
Der Satz sei anschliessend an einem Beispiel illustriert.

Aufgabe: Zu einem gewissen Zeitpunkt hat die Schweizerische Postverwaltung
5 verschiedene 10er Marken, 3 verschiedene 20er Marken, eine 30er Marke und zwei
verschiedene 50er Marken im Verkehr. Auf wie viele Arten kann man ein Ausland-
Briefporto von 50 Rappen zusammenstellen, wenn von der Art des Aufklebens der
Marken abgesehen wird

Es stehen insgesamt 11 Sorten Briefmarken zur Verfügung. Mit der &-ten Markenart

bilde man dann die Figurenmenge

^ {-0,00,000,....}.
Hat die zugrunde liegende Marke den Frankatur-Wert 10%, dann gehört zur

Menge Bk die abzählende Potenzreihe

&(*) i + _-* + z*"* + T_L-.

Die Menge aller möglichen Frankaturen mit den 11 Markenarten ist

B B1 X B2 x X B10 x Bn

Dabei ist die Annahme getroffen, dass jede Markenart unbeschränkt zur
Verfügung steht. Da der Index (Frankatur-Wert) additiv ist, lässt sich unser Satz über
abzählende Potenzreihen anwenden. Man erhält für die abzählende Potenzreihe der
Menge B

^ (rb)5(^)8(^)(r^)2-
Unter Berücksichtigung von

können die ersten Glieder von ß(z) leicht erhalten werden:

ß(z) (1 + 5z 4- 15z2 + 35z3 + 70z4 4- 126z5 4- (1 + 3z2 4- 6z4 4-

x (i + zz+ (i + 2z5+ 1 4- 5z 4- 18z2 4- 51z3 -f 126z4 + 281z5 4-

In unserer Aufgabenstellung ist nach der Anzahl der Figuren in B vom Index 5

gefragt. Aus der abzählenden Potenzreihe ß(z) liest man die Anzahl 281 heraus. Es

gibt also bei den 11 verfügbaren Markenarten 281 verschiedene Frankaturen im
Wert von 50 Rappen.
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3. Abzahlung der normierten irreduziblen Polynome über GF(p)

Es sei F(n) die Menge der genormten irreduziblen Polynome n-ten Giades über
GF(p):

¦p(n) ___. {0(n)^ 0(n)^ ^ 0(n)y

Der Figur $<w) ordnen wird den Grad n als Index zu. Mit einer Figur 0(n) eF("> bilden
wir nun die Figurenmenge

F{n) {— }0^n\0^0^n\0^0^0^} .}

Dazu gehört offenbar die abzählende Potenzreihe

<pW (z) i + z» + z2»+>-- j^--; i < / < /n.

Nun ist

F ff>xFfx-X F® x Ff x Ff .-. x F<f x Ff x • • • •

die Menge allei genormten Polynome über GF(p). Da bei der Multiplikation zweier
Polynome der Grad additiv ist, kann unser Satz über abzählende Potenzreihen
angewendet werden. Man schliesst daraus für die abzählende Potenzreihe von F

(P(Z): \l-z) \l-z2/ \l-z3/ ""
Nun gibt es aber genau pn genormte Polynome vom Grad n, denn in

%n + ßw_! xn~1 4- • • • + &\ x 4- «o

kann jeder Koeffizient p verschiedene Werte annehmen. Es ist daher zugleich

<p(z) 1 + pz + p2z2 + • • • -.1 — pz

Die beiden Darstellungen für cp (z) lassen nun die Beziehung

.2 T=_ "TTpz
(1)

entnehmen, aus der die Zahlen fn bestimmt werden können. Zunächst sei noch darauf
hingewiesen, dass das unendliche Produkt auf der linken Seiten von (1) definiert ist.
Man kann sich leicht überlegen, dass eine multiplizierbare Familie von formalen Potenzreihen

vorliegt.
Zur weitern Vereinfachung gehen wir vorerst zu den reziproken Reihen über:

00

n (i - z»y» i-pz.
w-l
Leitet man beidseitig logarithmisch ab, so folgt

|^lf-JL. (2)
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Aus (2) können jetzt die Zahlen fn viel einfacher gewonnen werden. Um die in (2)

verborgene Bindung zwischen den Zahlen fn besser erkennen zu können, schreiben
wir die linke Seite von (2) aus; sie lautet

/i + fi* + kz2 + Az3 + /xz4 4- /xz5 + /xz« 4- /xz7 4- /V8 + fx# +
4- 2/2z 4- 2/2z3 4- 2/2z5 4- 2/2z7 + 2/2z9 4-

+ 3/3z2 4-3/3Z5 +3/3Z« +..
+ 4/4z7 4-

5/5*4 + 5f^ +

4- 4/4z3

+ 6/6z5

4- 7/7z° +

Hierbei zeichnet sich deutlich ab, dass eine summierbare Familie von formalen
Potenzreihen vorliegt; die unendliche Summe auf der linken Seiten von (2) hat also
einen Sinn.

Addiert man nun kolonnenweise, so folgt

Z{Zttt\*,-1= Erz-*.
n l \tjn I w l

Man schliesst daraus auf die Beziehung

2> ft Pn (3)

aus der sich die fn sukzessive bestimmen lassen. Wir wollen aber gleich zu einer expliziten

Formel für die Zahlen /„ vorstossen.
Zur Auflösung von (3) nach den Zahlen fn benötigen wir die sogenannte

Mobiusfunktion, die wie folgt definiert ist:

fi(n)
def

1 für n 1

(— l)r für n pxp2 pr; die pt sind verschiedene Primzahlen

0 sonst.

Sind g(n) und h(n) beliebige Funktionen auf der Menge der natürlichen Zahlen,
die der Beziehung

27_ w *w
t/n

genügen, dann gilt bekanntlich die Umkehrung

*•>-£*<> *(j).
Es ist daher

nfn Zrtt)fin"
t/n
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oder

n tfn

Die Formel (4) liefert fur den Anfang der /„-Folge die Terme

h h h \{p%~P)> h=\{P*-P)> L j(P*-P2)>

h-\(P*-P), f«=*r(P«-P*-P2 + P)

1
Ist n eme Primzahl, dann gilt allgemein fn — (pn — p)

n
Aus der Formel (4) kann jetzt auch entnommen werden, dass fn > 1 fur alle n,

es gibt also zu jedem vorgegebenen Grad mindestens em irreduzibles Polynom Die
Summe

2>w *nlt
t/n

ist namhch em Polynom n-ten Grades m p mit lauter Koeffizienten aus der Menge

{-1, 0, +1}

ptypnlt pm (pn-m + _£. ty

Betrachtet man das entsprechende Polynom in der reellen Variablen f, also

£m(f"-m+ ±1)
so hat dieses allfalhge ganzzahlige Nullstellen inf 0 und f ± 1 Da sämtliche
Primzahlen ausserhalb der Menge {—1, 0, 4-1} hegen, ist /„ > 1 für alle ne N

Im Hinblick auf die Gewinnung des Galois-Feldes GF(pn) interessiert natürlich
nur die Anzahl der irreduziblen Polynome n-ten Grades uber GF(p) Es sei aber darauf
hingewiesen, dass mit derselben Überlegung auch die Anzahl der irreduziblen
Polynome n-ten Grades über GF(pr) erhalten werden kann Sie betragt

£,-^2>0_v"». /„> /„
n t\n

Man gelangt zu dieser Beziehung, wenn man in (4) p durch pr ersetzt
Diese Ergänzung verdanke ich E Trost, der mich zugleich auch auf einige

interessante Literaturstellen aufmerksam gemacht hat
M Jeger, Zürich
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