Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 28 (1973)

Heft: 4

Artikel: Irreduzible Polynome als kombinatorische Figuren
Autor: Jeger, M.

DOl: https://doi.org/10.5169/seals-29455

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-29455
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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Anhang (Beweis des Lemmas). Es seien ¢, ¢,, . . die Primzahlen mit ¢, = —1
(mod p). Nach dem Dirichletschen Satz gilth{l = oo. Somit divergiert die Reihe
Zv,. mit v; = (¢; — 1) ¢, % Das unendliche Produkt /7 (1 — v;) strebt daher gegen Null.
Man kann also # > 0 beliebig und 7 so gross wihlen, dass

4

J] @ —wv) <g2. (11)
i1
Wenn fiir irgend ein ¢ ¢; | #» und ¢%1# gilt, so folgt ¢(n) =0 (mod p). Nunsei B, = [] gq,.
i=1
Wenn fiir ein w in 1 < # < B2und ein 2 < 7 ¢; | » und ¢2 + « gilt, dann folgt aus

n = u (mod B2), dass o(n) = 0 (mod p). Fiir die Anzahl der Restklassen » (mod B%),
die diese Eigenschaft nicht haben, erhilt man sofort aus dem Sieb des Eratosthenes
den Ausdruck

7 -1
B? (1-— 7 )
,-IZ A

der nach (11) < 0,5 B2 ist. Daher ist fiir x > %, (5, 7) die Anzahl der Zahlen » < x
mit g(n) == 0 (mod p) kleiner als

059 B2-xB;2+ 057 B2 <nx. (12)
Da (12) tiir jedes n > O gilt, ist der Beweis fertig. P. Erdos

Irreduzible Polynome als kombinatorische Figuren

Der folgende Beitrag behandelt ein Abzdhlproblem aus der klassischen Algebra,
das erstmals von Gauss gelost worden ist. Gelegentlich taucht es auch in der neueren
Literatur wieder auf (Vgl. [1] und [2]). Mit der Darlegung der folgenden Losung soll
ein Einblick in die modernen Methoden der abzdhlenden Kombinatorik vermittelt
werden.

1. Die Problemstellung

Die endlichen Korper oder Galois-Felder werden in der algebraischen Literatur
meist damit abgetan, dass an einer geeigneten Stelle ein kurzer und eleganter Existenz-
beweis eingeflochten wird. Die neueren Entwicklungen in der sogenannten finiten
Mathematik') bringen es mit sich, dass die Galois-Felder mehr und mehr explizit
benétigt werden. So kann zum Beispiel auf Grund einer Darstellung des Galois-
Feldes GF(p™)?) die endliche Desarguessche affine Ebene von der Ordnung s = $*
leicht konstruiert werden. Damit im Zusammenhang steht die Aufgabe, orthogonale
lateinische Quadrate von der Ordnung s = $" zu finden. An lateinischen Verteilungen

1) Im angelsichsischen Raum treffender als Combinatorial Mathematics bezeichnet.
2) p ist eine Primzahl, » eine beliebige natiirliche Zahl.
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ist der Statistiker sehr interessiert; er verwendet sie gelegentlich bei der Planung von
Versuchen.

Um eine Darstellung des Galois-Feldes GF(p") zu erhalten, kann man vom
Polynomring iiber dem Restklassenkérper mod p ausgehen. Man greift aus dem
Polynomring iiber GF(p) ein irreduzibles Polynom vom Grad n heraus und betrachtet
dann die Restklassen in bezug auf dieses Polynom. Wir wollen dieses an sich elemen-
tare Konstruktionsverfahren an einem Beispiel genauer verfolgen.

Es soll etwa das Galois-Feld GF(23) gewonnen werden. Ausgangsbasis ist der
Restklassen-Koérper GF(2). Seine beiden Elemente seien mit 0 (Nullelement) und

1 (Einselement) bezeichnet. Ein irreduzibles Polynom 3. Grades mit Koeffizienten aus
GF(2) ist

gx) =22+ x+ 1.

Wegen g(0) = 1 und g(1) = 1 lasst sich ndmlich kein Linearfaktor abspalten. Die
Elemente von GF(23) sind nun die Polynome

neue Bezeichnung

0 %y

1 oy

x oy
x+1 oy

%2 oy
x2 +1 o
% +x o
2 +x +1 oy

®, ist das Nullelement, o, das Einselement.

Fiir die Summe und das Produkt von Polynomen mod g(x) erhédlt man leicht die
folgenden Verkniipfungstafeln:

@ | o o % 03 Gy U5 K O O 0 Oy O Oy o5 Og Oy
% g Oy Oy Oy Oy Oy Og Oy oy o %y Oy Oy Oy g O
o % & &3 &y x5 X3 Ky Og Xz %y g g K3 Oy KXy &g
X2 Xy X3 %g Oy &g X7 Xy X5 s X3 Og 05 & &g X Xy
oy oy Oy 0y Oy Oy g O O oy 0y g Oy Og O Oy O
oty g Oy Og Oy Og &y Oy O o oy Oy Oy Oy Oy Oy O
%5 X g X7 Og Gy KXy X3 Xy Xg %g X7 A &5 A3 KXy 04
%g xg K7 Oy X5 Ly Xz O Oy %7 %y &5 Oy Oy K &y Uy
oy o, Og O Oy Oy Oy Oy O

Allgemein ist die Konstruktion von GF(p") moglich, sobald ein irreduzibles
Polynom #-ten Grades iiber GF(p) bekannt ist. Es existiert stets ein solches Polynom.
Wir stellen uns nun die Aufgabe, ihre Anzahl zu bestimmen.
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Ein Polynom #-ten Grades iiber GF(p)
gx)=a,x"+a, 2" 1+ ...+ a,x+ a,

heisst genormt, wenn a, = 1 ist. Im Lichte unserer Képrer-Erweiterungen sind natiir-
lich nur die verschiedenen genormten irreduziblen Polynome #-ten Grades von Inter-
esse. Wir wollen daher das Abzdhlproblem wie folgt prézisieren: Es soll die Anzahl
der genormten irreduziblen Polynome n-ten Grades iiber dem Restklassen-Korper GF(p)
ermittelt werden. Diese Anzahl wird anschliessend mit f, bezeichnet.

2. Ein Satz iiber abzidhlende Potenzreihen
Es sei F eine abzdhlbare Menge von kombinatorischen Figuren
F={D,9,P,,..... }

wobei der Figur @; die nicht-negative ganze Zahl m, als Index zugeordnet ist. Die
formale Potenzreihe in der Unbestimmten z

ple) =, ™
F
heisst dann die abzdhlende Potenzreihe der Figurenmenge F.

Beispiel: Mit einer bestimmten Sorte von 10-Rappen-Briefmarken werde die Figu-
renmenge

B={- [0 OO0

gebildet. Das erste Zeichen in der Klammer kennzeichnet die sogenannte leere Figur,
die gelegentlich sehr zweckmissig ist. Hat eine Figur in B den Frankatur-Wert
10n Rappen, so wollen wir ihr den Index # zuordnen. Dann gehort zur Figurenmenge
B offenbar die abzidhlende Potenzreihe

Wir betrachten jetzt zwei Figurenmengen
F1={¢1,®2,....} und F2={Qp1,q)2,....}.

Wird der Figur ¢, der Index m;, der Figur y; der Index #; zugeschrieben, dann gehéren
zu F| und F, die abzdhlenden Potenzreihen

prle) = 2" gale) = X"
F, F,
Aus F; und F, ldsst sich nun die neue Figurenmenge
Fyx Fy={(®;, v;)|®; € F; \ y; € Fy}
ableiten. Gibt man darin der Figur (¢, y;) dep Index m, + n,, so gilt

Zmen = () (X2)

F,xF, F, F,
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d.h. die Figurenmenge F = F; X F, hat die abzihlende Potenzreihe
P(2) = @1(2) - @a(2) -
Daraus kann man den folgenden Satz iiber abzdhlende Potenzreihen entnehmen.

Satz: Haben die Figurenmengen Fy, und Fy die abzihlenden Potenzrethen p,(2) und
@o(2) und ist der Index der Figuren bei der Paarbildung additiv, dann hat die Figuren-
menge Fy X Fy die abzihlende Potenzrethe @,(2) - po(2).

Der Satz sei anschliessend an einem Beispiel illustriert.

Aufgabe: Zu einem gewissen Zeitpunkt hat die Schweizerische Postverwaltung
5 verschiedene 10er Marken, 3 verschiedene 20er Marken, eine 30er Marke und zwei
verschiedene 50er Marken im Verkehr. Auf wie viele Arten kann man ein Ausland-
Briefporto von 50 Rappen zusammenstellen, wenn von der Art des Aufklebens der
Marken abgesehen wird ?

Es stehen insgesamt 11 Sorten Briefmarken zur Verfiigung. Mit der 2-ten Marken-
art bilde man dann die Figurenmenge

Hat die zugrunde liegende Marke den Frankatur-Wert 10%,, dann gehort zur
Menge B, die abzdhlende Potenzreihe

Brld) =1+ 2"+ 272" 4 oo = ———— :

Dabei ist die Annahme getroffen, dass jede Markenart unbeschrankt zur Ver-
fiigung steht. Da der Index (Frankatur-Wert) additiv ist, ldsst sich unser Satz tiber
abzihlende Potenzreihen anwenden. Man erhilt fiir die abzihlende Potenzreihe der
Menge B

o () () () ()

Unter Beriicksichtigung von

1 s o (S—1+7\ s
(1——2'7) "‘,Z::( s—1 )

konnen die ersten Glieder von f(z) leicht erhalten werden:

B(z) = (1 + 52+ 1522 + 3528 4 7024 + 12625 + .. .) (1 4+ 322+ 622 4 .. )
X (14+284...) (142254 ...) =1+ 524 1822 + 5123 + 12624 4 2815 4 . . ..

In unserer Aufgabenstellung ist nach der Anzahl der Figuren in B vom Index 5
gefragt. Aus der abzihlenden Potenzreihe f(z) liest man die Anzahl 281 heraus. Es
gibt also bei den 11 verfiigbaren Markenarten 281 verschiedene Frankaturen im
Wert von 50 Rappen.
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3. Abzéhlung der normierten irreduziblen Polynome iiber GF(p)

Es sei F® die Menge der genormten irreduziblen Polynome #-ten Grades iiber
GF(p):

Fn — {@&n)’dj;n), e, @}:)}

Der Figur " ordnen wird den Grad # als Index zu. Mit einer Figur @® € F® bilden
wir nun die Figurenmenge

F](n) — {__’ @}n), @](n)@y(n), @;n)qj;_n)Qy(n)’ L }
Dazu gehort offenbar die abzidhlende Potenzreihe
1

oA =1+ = 1<i<,.

Nun ist
F==F(11)>< F(21)X ceex F}l)x F(12)>< Fg%)...x F? % F§3)><
1 2

die Menge aller genormten Polynome iiber GF(p). Da bei der Multiplikation zweier
Polynome der Grad additiv ist, kann unser Satz iiber abzdhlende Potenzreihen ange-
wendet werden. Man schliesst daraus fiir die abzdhlende Potenzreihe von F

o= (r=) (=) (7)o

Nun gibt es aber genau $* genormte Polynome vom Grad #, denn in

xn+a”—.1xn~1+o..+a1x+ao

kann jeder Koeffizient p verschiedene Werte annehmen. Es ist daher zugleich

P2) = 1+ pz + p22 + - - -

T 1z
Die beiden Darstellungen fiir ¢(z) lassen nun die Beziehung
o 1\ 1
i ( m) _ M
ne1 \1— 27 1— pz

entnehmen, aus der die Zahlen f, bestimmt werden kénnen. Zunichst sei noch darauf
hingewiesen, dass das unendliche Produkt auf der linken Seiten von (1) definiert ist.
Man kann sich leicht {iberlegen, dass eine multiplizierbare Familie von formalen Potenz-
reihen vorliegt.
Zur weitern Vereinfachung gehen wir vorerst zu den reziproken Reihen tiber:
0

IT (1 —2)n=1-—pz.

n=1

Leitet man beidseitig logarithmisch ab, so folgt

Sl gt @

"_11——2" _1_';;
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Aus (2) koénnen jetzt die Zahlen f, viel einfacher gewonnen werden. Um die in (2)
verborgene Bindung zwischen den Zahlen f, besser erkennen zu konnen, schreiben
wir die linke Seite von (2) aus; sie lautet

e+ h22+hB3+ Rt + s 8+ f + 8+ f2® ...
+ 2fyz + 2fy2® + 2f428 + 2fy2 + 2f 2 + . ..

+ 3f422 + 3f32° + 3f,28 + ..
+ 41,23 + 4f 77 + ...
+ 5f52* + 5fg2® + . ..
+ 6f¢2° + ...
+ 71,28 + ...

Hierbei zeichnet sich deutlich ab, dass eine summaierbare Familie von formalen
Potenzreihen vorliegt; die unendliche Summe auf der linken Seiten von (2) hat also
einen Sinn.

Addiert man nun kolonnenweise, so folgt
Z(tht) an—1 — an an—1
n=1 \t/n n=1

Man schliesst daraus auf die Beziehung

2t =1 3)

tn

aus der sich die f, sukzessive bestimmen lassen. Wir wollen aber gleich zu einer expli-
ziten Formel fiir die Zahlen f, vorstossen.

Zur Auflosung von (3) nach den Zahlen f, benétigen wir die sogenannte Mébius-
funktion, die wie folgt definiert ist:

1 firn=1
u(m) =13 (— 1) fir = pyp, ... p,; die p, sind verschiedene Primzahlen
0  sonst.

Sind g(n) und A(n) beliebige Funktionen auf der Menge der natiirlichen Zahlen,
die der Beziehung

D, g(t) = h(n)

tin
geniigen, dann gilt bekanntlich die Umkehrung
n
g(n)=‘f:,u(t) h\7)
ln

Es ist daher
nt, =2 ult) p

tin
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oder
1
— nit 4
, om0 )
Die Formel (4) liefert fiir den Anfang der f,-Folge die Terme

1 1
=i =5 =) =5 @~ fa= 5 0 — 9

1 1 6 3 2
fo=5 0= 1) fo= < (°— 1* =12+ ).

1
Ist # eine Primzahl, dann gilt allgemein f, = . (p* — P).

Aus der Formel (4) kann jetzt auch entnommen werden, dass f, > 1 fiir alle #;
es gibt also zu jedem vorgegebenen Grad mindestens ein irreduzibles Polynom. Die
Summe

D, ule) pt

tin

ist ndmlich ein Polynom #-ten Grades in p mit lauter Koeffizienten aus der Menge
{-1,0, +1}:

MO P =P £ )

Betrachtet man das entsprechende Polynom in der reellen Variablen &, also
Em(fr—m4 ...+ 1)

so hat dieses allfdllige ganzzahlige Nullstellen in & = 0 und & = 4 1. Da simtliche
Primzahlen ausserhalb der Menge {—1, 0, 41} liegen, ist f, > 1 fiir alle n € N.

Im Hinblick auf die Gewinnung des Galois-Feldes GF(p") interessiert natiirlich
nur die Anzahl der irreduziblen Polynome #-ten Grades iiber GF(p). Es sei aber darauf
hingewiesen, dass mit derselben Uberlegung auch die Anzahl der irreduziblen Poly-
nome #-ten Grades tiber GF(p") erhalten werden kann. Sie betrigt

1= 3l 77 =,
n in
Man gelangt zu dieser Beziehung, wenn man in (4) p durch 7 ersetzt.
Diese Erganzung verdanke ich E. Trost, der mich zugleich auch auf einige inte-
ressante Literaturstellen aufmerksam gemacht hat.
M. Jeger, Ziirich
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