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iibertragen, wo er iiber alle Grenzen hinweg Kontakte fordern konnte. Die hohe
Wertschitzung, die ihm von allen Seiten entgegengebracht wurde, kam sehr deutlich
zum Ausdruck, als einmal an einer Topologie-Tagung im Mathematischen Forschungs-
institut in Oberwolfach in einer Art Gesellschaftsspiel der bedeutendste lebende
Mathematiker ermittelt werden sollte; die Wahl fiel einmiitig auf Heinz Hopf.
Wenn man sich fragt, worin das Wesen dieses grossen Mannes bestand, so wird
man an seine warme Menschlichkeit denken, an seine Offenheit anderen gegeniiber,
gepaart mit vornehmer Zuriickhaltung, an seine humorvoll-pfiffige Art, mit der er
sich iiber gute Losungen freuen konnte, an seine iiberlegene Personlichkeit, mit der
er die Dinge ins richtige Verhiltnis brachte. Aber irgendwo entzieht sich dies alles
einer Beschreibung. Wir stossen auf das Geheimnis eines Menschen, bei dem der volle
Einsatz fiir die Wissenschaft nicht mit einer Deformation erkauft war, bei dem die
Mathematik den richtigen Platz in einem harmonischen Ganzen hatte, das Geheimnis
eines Mannes, der nicht nur in der Mathematik, sondern als ganzer Mensch schopfe-
richs war. Die Impulse, die von ihm auf die Wissenschaft ausgegangen sind, werden
weiter wirken; aber dariiber hinaus hat er seinen Freunden und Schiilern ein mensch-
liches Vorbild gegeben, an dem sich zu messen und das weiterzutragen Herausforde-
rung und Aufgabe bleibt. Konrad Voss

Uber die Zahlen der Form 6(n) —n und n— ¢(n)
Dem Andenken von Waclaw Sierpiniski gewidmet

Ich traf Professor Sierpifiski zuerst im August 1955 bei einer mathematischen
Tagung in Prag. Sierpinski war damals schon mehr an der elementaren Zahlentheorie
interessiert als an der Mengenlehre. Wir diskutierten iiber die Eulersche ¢-Funktion
und vermuteten, dass fiir unendlich viele m die Gleichung

n—gn) =m (1)

unlésbar ist. Diese Vermutung ist noch immer unentschieden, ich werde aber zeigen,
dass fiir unendlich viele Werte von m

on) —n=m (2)
unlosbar ist. Wir beweisen einen etwas stirkeren

Satz I. Die untere Dichte!) der Zahlen m, fiir welche (2) unlosbar ist, ist positiv.

Bevor wir unseren Satz beweisen, wollen wir einige Besonderheiten unserer Ver-
mutung besprechen. Es sei #=p g, wo p und g verschiedene ungerade Primzahlen
sind. Offenbar ist

n—gm=p+q-1.

1) Ist @; < a, < a3 < ...eine unendliche Folge natiirlicher Zahlen und 4 (») die Anzahl der
ai < m, so ist fiir # — 0o d = lim A (n)/n die untere und d = lim 4 (n)/n die obere Dichte
der Folge. Ist d = d = d, so wird 4 die (asymptotische) Dichte der Folge genannt.
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Wenn die (leicht modifizierte?)) Goldbachsche Vermutung wahr ist, so ist jede
ungerade Zahl in der Form (1) darstellbar, und jede ungerade Zahl + 5 ist in der
Form (2) darstellbar. Van der Corput, Esterman und Tchudakoff zeigten, dass die
geraden Zahlen, die nicht Summe zweier Primzahlen sind, die Dichte 0 haben, daher
sind fast alle ungeraden Zahlen in der Form (1) und (2) darstellbar. Die kleinste gerade
Zahl, die nicht in der Form #n — @(n) darstellbar ist, ist 14. 2 und 4 sind nicht in der
Form o(n) — n darstellbar. Man kénnte ohne grosse Miihe alle Zahlen bis 10% bestim-
men, die nicht in dex Form (1) und (2) darstellbar sind. I. Ruzsa vermutete, dass die
Dichte der Zahlen, die nicht in der Form (1) darstellbar sind, O ist, es ist aber nicht
einmal bekannt, ob die obere Dichte dieser Zahlen grosser als 1/, ist oder ob die Dichte
der in der Form (1) und (2) darstellbaren Zahlen iiberhaupt existiert.

Die Zahlen der Form g(n) und o(n) sind viel leichter zu studieren. 4,(x) sei die
Anzahl der Zahlen m < x, die sich in der Form ¢(n) darstellen lassen, und A4,(x) sei
analog fiir o(n) definiert. Pillai zeigte, dass 4 ,(x) = o(x) ist, und ich zeigte, dass fiir
jedes € und x > x, (&)

X
A — {1
8) < oy (082" ®
gilt (P. Erdds, Quarterly Journal of Math. 1935). Kiirzlich zeigten R.R. Hall und
ich, dass

A,x) < T g—— exp c(loglog x) *° (4)

ist; unser Beweis ist noch nicht veroffentlicht. Weiter zeigte ich (Bull. Amer. Math.
Soc. 1945)

A (x) > log loglog « . (5)
(5) ldasst sich wohl noch auf A,(x) > (c x/log x) (loglog x)* fiir jedes & und x > xy(k)
verschirfen.

Weiter zeigte ich (Quarterly Journal 1935), dass ein ¢ > 0 existiert, so dass fiir
unendlich viele m die Gleichung ¢(n) = m mehr als m¢ Losungen hat. Sicherlich gilt
dies fiir jedes ¢ > 1, aber wir sind weit entfernt davon, dies zeigen zu konnen.

Die hier erwihnten Sdtze gelten alle auch fiir o(n). Ich weiss aber nicht, ob
A,(x) — A,(x) unendlich viele Zeichenwechsel hat und ob }13310 A, (x)[A(x) existiert

und 1 ist; diese Fragen sind wahrscheinlich recht schwierig. Ich weiss auch nicht,
ob ¢(n) = a(m) unendlich viele Lésungen hat.

Nun beweisen wir unseren Satz. Es sei B, = 2.3 ..., das Produkt der ersten %
Primzahlen. Wir beweisen den folgenden stdrkeren

Satz II. Zu jedem & > 0 gibt es ein £, so dass fiir alle x > x,(¢, k) die Anzahl
A(k, x) der Zahlen n + p, fiir welche

on) —n <x, on —n=0(modP,) (6)
gilt, kleiner als ¢ x/P, ist.

2) Jede gerade Zahl > 6 ist die Summe zweier verschiedener Primzahlen.
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Aus Satz II folgt, dass die obere Dichte der Zahlen m = 0 (mod B,) von der Form
(2) hochstens /B, < 1/B, ist. Wire die untere Dichte der nicht in der Form (2)
darstellbaren Zahlen 0, so wire die obere Dichte der Zahlen der Form (2) 1 und die
obere Dichte der durch B, teilbaren unter ihnen > 1/B,. Daher folgt Satz I aus Satz II.
Offenbar gilt

Ak, %) = Ay(k, %) + Ay, ) + Aylk, %) , (7)

wo A,(k, x) die Anzahl der Lésungen von (6) mit # = 1 (mod 2), A,(k, x) die Anzahl
der Lésungen von (6) mit # = 0 (mod 2), £ 0 (mod P,) und A4(k, x) die Anzahl der
Losungen von (6) mit # = 0 (mod P,) bedeutet. Zuerst zeigen wir

A (R, x) = o(x) (8)
und

Ay(k, %) = o(x) . )

Aus n =1 (mod 2), o(n) —n =0 (mod 2), folgt o(r) =1 (mod 2). Daher ist #n = 2.
Wenn ¢ Primzahl ist, folgt o(n) — n > }/n, also wegen a(n) —n < x, n < &2, t < x.
Wenn ¢ nicht Primzahl ist, gilt o(n) — n > #n3* (da der kleinste Primfaktor eines
quadratischen # nicht grosser als 71/ ist und daher # p=1 > %34 gilt). Daher folgt aus
o(n) —n < x, dass n < x*® < %2 und ¢ < %4 Also 4,(%, x) < 7(x) + x3/4 = o(x),
womit (8) bewiesen ist.

Jetzt wollen wir (9) beweisen. Hier gilt # = 0 (mod 2), also ist o(n) > 3 n/2.
Daher folgt aus o(n) — n < «x, dass n < 2 x. Wir bendtigen nun folgendes:

Lemma. Es sei p eine beliebige Primzahl. Die Dichte der Zahlen » mit g(n) == 0
(mod ) ist 0.

Das Lemma ist wohlbekannt. Der Vollstandigkeit wegen werden wir es aber im
Anhang beweisen. Aus unserem Lemma folgt sofort, dass die Anzahl der Zahlen
n < 2x mit o(n) == 0 (mod B,) o(x) ist. Wegen (6) und » == 0 (mod B,) folgt aber
d(n) == 0 (mod P,), daher folgt (9) sofort aus n < 2x«.

Schliesslich wollen wir 44(k, x) abschdtzen. Wegen #» = 0 (mod F,) folgt

a(n) Znﬁ(1+}%) > (§-~+1)n

i1
fiir & > ko(¢), da ) '1/p, = oo. Daher folgt aus o(n) — n < x, dass n < & %/2, also
i=1

%m@<%%. (10)

Satz II folgt sofort aus (8), (9) und (10). Leider ldsst sich diese einfache Methode
nicht auf n — ¢(n) anwenden.

Folgende Frage konnte ich weder fiir ¢(n) noch fiir o(n) beantworten. Ist es
wahr, dass fiir jedes ¢ > 1 und ¢ > 1 Zahlen m, und m, existieren mit o(m,) > ¢ m,,
@(my) << myfc, so dass die Gleichungen

oln) —m=my, n—gpn)=m

mindestens ¢ Losungen haben.



86 M. Jeger: Irreduzible Polynome als kombinatorische Figuren

Anhang (Beweis des Lemmas). Es seien ¢, ¢,, . . die Primzahlen mit ¢, = —1
(mod p). Nach dem Dirichletschen Satz gilth{l = oo. Somit divergiert die Reihe
Zv,. mit v; = (¢; — 1) ¢, % Das unendliche Produkt /7 (1 — v;) strebt daher gegen Null.
Man kann also # > 0 beliebig und 7 so gross wihlen, dass

4

J] @ —wv) <g2. (11)
i1
Wenn fiir irgend ein ¢ ¢; | #» und ¢%1# gilt, so folgt ¢(n) =0 (mod p). Nunsei B, = [] gq,.
i=1
Wenn fiir ein w in 1 < # < B2und ein 2 < 7 ¢; | » und ¢2 + « gilt, dann folgt aus

n = u (mod B2), dass o(n) = 0 (mod p). Fiir die Anzahl der Restklassen » (mod B%),
die diese Eigenschaft nicht haben, erhilt man sofort aus dem Sieb des Eratosthenes
den Ausdruck

7 -1
B? (1-— 7 )
,-IZ A

der nach (11) < 0,5 B2 ist. Daher ist fiir x > %, (5, 7) die Anzahl der Zahlen » < x
mit g(n) == 0 (mod p) kleiner als

059 B2-xB;2+ 057 B2 <nx. (12)
Da (12) tiir jedes n > O gilt, ist der Beweis fertig. P. Erdos

Irreduzible Polynome als kombinatorische Figuren

Der folgende Beitrag behandelt ein Abzdhlproblem aus der klassischen Algebra,
das erstmals von Gauss gelost worden ist. Gelegentlich taucht es auch in der neueren
Literatur wieder auf (Vgl. [1] und [2]). Mit der Darlegung der folgenden Losung soll
ein Einblick in die modernen Methoden der abzdhlenden Kombinatorik vermittelt
werden.

1. Die Problemstellung

Die endlichen Korper oder Galois-Felder werden in der algebraischen Literatur
meist damit abgetan, dass an einer geeigneten Stelle ein kurzer und eleganter Existenz-
beweis eingeflochten wird. Die neueren Entwicklungen in der sogenannten finiten
Mathematik') bringen es mit sich, dass die Galois-Felder mehr und mehr explizit
benétigt werden. So kann zum Beispiel auf Grund einer Darstellung des Galois-
Feldes GF(p™)?) die endliche Desarguessche affine Ebene von der Ordnung s = $*
leicht konstruiert werden. Damit im Zusammenhang steht die Aufgabe, orthogonale
lateinische Quadrate von der Ordnung s = $" zu finden. An lateinischen Verteilungen

1) Im angelsichsischen Raum treffender als Combinatorial Mathematics bezeichnet.
2) p ist eine Primzahl, » eine beliebige natiirliche Zahl.
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