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übertragen, wo er uber alle Grenzen hinweg Kontakte fordern konnte Die hohe
Wertschätzung, die ihm von allen Seiten entgegengebracht wurde, kam sehr deutlich
zum Ausdruck, als einmal an einer Topologie-Tagung im Mathematischen Forschungsinstitut

m Oberwolfach m einer Art Gesellschaftsspiel der bedeutendste lebende
Mathematiker ermittelt werden sollte, die Wahl fiel einmütig auf Heinz Hopf

Wenn man sich fragt, worin das Wesen dieses grossen Mannes bestand, so wird
man an seine warme Menschlichkeit denken, an seine Offenheit anderen gegenüber,
gepaart mit vornehmer Zurückhaltung, an seine humorvoll-pfiffige Art, mit der er
sich uber gute Losungen freuen konnte, an seine überlegene Persönlichkeit, mit der
er die Dmge ms richtige Verhältnis brachte Aber irgendwo entzieht sich dies alles

einer Beschreibung Wir stossen auf das Geheimnis eines Menschen, bei dem der volle
Einsatz fur die Wissenschaft nicht mit einer Deformation erkauft war, bei dem die
Mathematik den richtigen Platz in einem harmonischen Ganzen hatte, das Geheimnis
eines Mannes, der nicht nur m der Mathematik, sondern als ganzer Mensch schöpfe-
nchs war Die Impulse, die von ihm auf die Wissenschaft ausgegangen smd, werden
weiter wirken, aber darüber hinaus hat er seinen Freunden und Schulern em menschliches

Vorbild gegeben, an dem sich zu messen und das weiterzutragen Herausforderung

und Aufgabe bleibt Konrad Voss

Über die Zahlen der Form a(n) — n und n — q>(n)

Dem Andenken von Waclaw Sierpinski gewidmet

Ich traf Professor Sierpinski zuerst im August 1955 bei einer mathematischen
Tagung m Prag Sierpinski war damals schon mehr an der elementaren Zahlentheorie
interessiert als an der Mengenlehre Wir diskutierten uber die Eulersche «^-Funktion
und vermuteten, dass fur unendlich viele m die Gleichung

n — <p(n) m (1)

unlösbar ist Diese Vermutung ist noch immer unentschieden, ich werde aber zeigen,
dass fur unendlich viele Werte von m

a(n) — n m (2)

unlösbar ist Wir beweisen einen etwas stärkeren

Satz I. Die untere Dichte1) der Zahlen m, fur welche (2) unlösbar ist, ist positiv
Bevor wir unseren Satz beweisen, wollen wir einige Besonderheiten unserer

Vermutung besprechen Es sei n p q, wo p und q verschiedene ungerade Primzahlen
smd Offenbar ist

n — (p(n) p + q — 1

x) Ist ax < a2 < a3 < eme unendliche Folge natürlicher Zahlen und A (n) die Anzahl der

at < n, so ist für n ~> oo d lim A(n)jn die untere und d hm A(n)fn die obere Dichte
der Folge Ist d d d, so wird d die (asymptotische) Dichte der Folge genannt
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Wenn die (leicht modifizierte2)) Goldbachsche Vermutung wahr ist, so ist jede
ungerade Zahl in der Form (1) darstellbar, und jede ungerade Zahl 4= 5 ist in der
Form (2) darstellbar. Van der Corput, Esterman und Tchudakoff zeigten, dass die
geraden Zahlen, die nicht Summe zweier Primzahlen sind, die Dichte 0 haben, daher
sind fast alle ungeraden Zahlen in der Form (1) und (2) darstellbar. Die kleinste gerade
Zahl, die nicht in der Form n — <p(n) darstellbar ist, ist 14. 2 und 4 sind nicht in der
Form a(n) — n darstellbar. Man könnte ohne grosse Mühe alle Zahlen bis 106 bestimmen,

die nicht in dei Form (1) und (2) darstellbar sind. I. Ruzsa vermutete, dass die
Dichte der Zahlen, die nicht in der Form (1) darstellbar sind, 0 ist, es ist aber nicht
einmal bekannt, ob die obere Dichte dieser Zahlen grösser als 1/2 ist oder ob die Dichte
der in der Form (1) und (2) darstellbaren Zahlen überhaupt existiert.

Die Zahlen der Form op(n) und o(n) sind viel leichter zu studieren. Av(x) sei die
Anzahl der Zahlen m < x, die sich in der Form cp(n) darstellen lassen, und Aa(x) sei

analog für a(n) definiert. Pillai zeigte, dass A^(x) o(x) ist, und ich zeigte, dass für
jedes s und x > x0 (e)

Av{x)< ^—{\ogxy (3)
log X

gilt (P. Erdös, Quarterly Journal of Math. 1935). Kürzlich zeigten R.R. Hall und
ich, dass

x
A<p{x) < i exp c(loglog x) °'5 (4)

log X

ist; unser Beweis ist noch nicht veröffentlicht. Weiter zeigte ich (Bull. Amer. Math.
Soc. 1945)

c x
A9(x) > j--^ loglog x. (5)

log X

(5) lässt sich wohl noch auf A^x) > (c #/log x) (loglog x)k für jedes k und x > xQ(k)

verschärfen.
Weiter zeigte ich (Quarterly Journal 1935), dass ein c > 0 existiert, so dass für

unendlich viele m die Gleichung qj(n) m mehr als mc Lösungen hat. Sicherlich gilt
dies für jedes c > 1, aber wir sind weit entfernt davon, dies zeigen zu können.

Die hier erwähnten Sätze gelten alle auch für a(n). Ich weiss aber nicht, ob

Atp(x) — Aa(x) unendlich viele ZeichenWechsel hat und ob lim A<p(x)/Aa(x) existiert

und 1 ist; diese Fragen sind wahrscheinlich recht schwierig. Ich weiss auch nicht,
ob <p(n) o(m) unendlich viele Lösungen hat.

Nun beweisen wir unseren Satz. Es sei Pk 2.3 pk das Produkt der ersten k
Primzahlen. Wir beweisen den folgenden stärkeren

Satz II. Zu jedem e > 0 gibt es ein k, so dass für alle x > xQ(e, k) die Anzahl
A (k, x) der Zahlen n 4= p, für welche

a(n) — n < x a(n) — n 0 (mod Ph) (6)

gilt, kleiner als e x/Pk ist.

2) Jede gerade Zahl > 6 ist die Summe zweier verschiedener Primzahlen.
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Aus Satz II folgt, dass die obere Dichte der Zahlen m 0 (mod Pk) von der Form
(2) höchstens e/Pk < 1/Pk ist. Wäre die untere Dichte der nicht in der Form (2)
darstellbaren Zahlen 0, so wäre die obere Dichte der Zahlen der Form (2) 1 und die
obere Dichte der durch Pk teilbaren unter ihnen > 1/Pk. Daher folgt Satz I aus Satz II.

Offenbar gilt

A(k, x) Ax(k, x) + A2(k, x) + Az{k, x) (7)

wo Ax(k, x) die Anzahl der Lösungen von (6) mit n 1 (mod 2), A2(k, x) die Anzahl
der Lösungen von (6) mit n 0 (mod 2), n^ 0 (mod Pk) und A3(k, x) die Anzahl der
Lösungen von (6) mit n 0 (mod PÄ) bedeutet. Zuerst zeigen wir

Ax(k, x) o(x) (8)

und

A2(k, x) o(*) (9)

Aus n l (mod 2), o(n) -n^O (mod 2), folgt a(n) 1 (mod 2). Daher ist w *2.

Wenn t Primzahl ist, folgt a(n) — n > )/w, also wegen o(n) — n < x, n < x2, t < x.
Wenn nicht Primzahl ist, gilt a(n) — n > w3/4 (da der kleinste Primfaktor eines

quadratischen n nicht grösser als n1^ ist und daher n p~x > n3/4 gilt). Daher folgt aus
a(n) -n < x, dass n < x^z < x3'2 und t < xz^. Also Ax(k, x) < n(x) +• ^3/4 o(x),
womit (8) bewiesen ist.

Jetzt wollen wir (9) beweisen. Hier gilt n 0 (mod 2), also ist a(n) > 3 n/2.
Daher folgt aus a(n) — n < x, dass n < 2 x. Wir benötigen nun folgendes:

Lemma. Es sei p eine beliebige Primzahl. Die Dichte der Zahlen n mit a(n) =£ 0

(mod p) ist 0.

Das Lemma ist wohlbekannt. Der Vollständigkeit wegen werden wir es aber im
Anhang beweisen. Aus unserem Lemma folgt sofort, dass die Anzahl der Zahlen
n < 2 x mit a(n) =£ 0 (mod Pk) o(x) ist. Wegen (6) und n _£ 0 (mod Pk) folgt aber
a(n) _£ 0 (mod Pk), daher folgt (9) sofort aus n < 2 x.

Schliesslich wollen wir Az(k, x) abschätzen. Wegen n 0 (mod Pk) folgt

,(«)>./7 (_+£)>(! + _)»

für ^ > k0(e), da 2J^/Pi ^ °°- Daher folgt aus a(w) — n < x, dass n < e x/2, also
z=i

^#'x)<__"i- (10)

Satz II folgt sofort aus (8), (9) und (10). Leider lässt sich diese einfache Methode
nicht auf n — <p(n) anwenden.

Folgende Frage konnte ich weder für <p(n) noch für a(n) beantworten. Ist es

wahr, dass für jedes c > 1 und t > 1 Zahlen mx und m2 existieren mit o(m^) > c mlf
<p(m2) < m2/c, so dass die Gleichungen

a(n) — n — mXi n — q)(n) m2

mindestens t Lösungen haben.
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Anhang (Beweis des Lemmas). Es seien qlt q2, die Primzahlen mit qt — 1

(mod p). Nach dem Dirichletschen Satz gilt y]q~x oo. Somit divergiert die Reihe

2Jvt mit vt (qt — 1) q~2. Das unendliche Produkt II (1 — vt) strebt daher gegen Null.
Man kann also rj > 0 beliebig und r so gross wählen, dass

fl (1 - < r,ß (11)
t~l

r
Wenn für irgend ein iqt \ n und q2fn gilt, so folgt a(n) 0 (mod ^). Nun sei Br= JJ qx-

* i
Wenn für ein u in 1 < u < B2 und ein i < r qt\ u und #f -f w gilt, dann folgt aus
w w (mod B2), dass a(n) 0 (mod p). Für die Anzahl der Restklassen u (mod B2),
die diese Eigenschaft m'c/^ haben, erhält man sofort aus dem Sieb des Eratosthenes
den Ausdruck

"•¦A(l-Lir)-
der nach (11) < 0,5 rj B2Y ist. Daher ist für x > x0 (rj, r) die Anzahl der Zahlen n < x
mit o(n) =£ 0 (mod p) kleiner als

0,5 r]B2r-x B;2 + 0,5 r\B2<r\x. (12)

Da (12) für jedes rj > 0 gilt, ist der Beweis fertig. P. Erdös

Irreduzible Polynome als kombinatorische Figuren

Der folgende Beitrag behandelt ein Abzählproblem aus der klassischen Algebra,
das erstmals von Gauss gelöst worden ist. Gelegentlich taucht es auch in der neueren
Literatur wieder auf (Vgl. [1] und [2]). Mit der Darlegung der folgenden Lösung soll
ein Einblick in die modernen Methoden der abzählenden Kombinatorik vermittelt
werden.

1. Die Problemstellung

Die endlichen Körper oder Galois-Felder werden in der algebraischen Literatur
meist damit abgetan, dass an einer geeigneten Stelle ein kurzer und eleganter Existenzbeweis

eingeflochten wird. Die neueren Entwicklungen in der sogenannten finiten
Mathematik1) bringen es mit sich, dass die Galois-Felder mehr und mehr explizit
benötigt werden. So kann zum Beispiel auf Grund einer Darstellung des Galois-
Feldes GF(pn)2) die endliche Desarguessche affine Ebene von der Ordnung s pn

leicht konstruiert werden. Damit im Zusammenhang steht die Aufgabe, orthogonale
lateinische Quadrate von der Ordnung s pn zu finden. An lateinischen Verteilungen

x) Im angelsächsischen Raum treffender als Combmatorial Mathematics bezeichnet.
2) p ist eine Primzahl, n eine beliebige natürliche Zahl.
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