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Eine etwas lingere Rechnung ergibt dann
BV, _#e
E' V) 3
Also gibt es zu jedem T°?, g € (0, 1) ein I, ; mit V(T°)/F(T¢) < V(I 1)/ F(I,, ).

B. Herz und J. Kaapke, TU Berlin

D:

[—3n%+ 2272 —40](1—9) £ 0 fir g€ (0,1).
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Kleine Mitteilungen
Uber einige elementare Abschitzungen von e

In einer fritheren kleinen Note [1] wurde die Zahl e durch einfache Ausdriicke

nach unten und nach oben abgeschitzt. Diese Schranken sollen jetzt weiter verbessert
werden.

Satz 1. Fiir x > 0 gilt:

1\*+0,5-1/8x 1 Vx”-{—x 1 Vx’+x+1l12 1\*#+0,5
14— <(1+= <e<(1+= <(1+=
X X X X

Bewers. Es ist
1 1 1 1

x+x2  x(x+1) x x+1°

Damit erhalten wir

1/1 1 1 1
2 -0,5 2 -0,5 1 [ _ Z(x2 -5 14—,
exp ((x%+ x)=%%) > 14 (42 + x) +2(x x+1)+6(x+x) >1+—
weil " i ’ i
%% + Ox +
2 -0,5 , - ———
(% + %) 642 + 6x >2x+2(x+1)

wegen 48x% + 12x + 1 > 45x% + 9« richtig ist.

Ist ’
x = 0,25, so folgt x+0,5—~§>0
und
0,5 1 2——2 1 1 ! <x2+x;
(x+ ) '—'"8}—) =X +x_"8;‘ 8x )
ist

1 N
0 < x<0,25, so folgt x+0,5——§;<x<|/x2—|—x.
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Hiermit sind die Abschédtzungen von e nach unten bewiesen. Wir betrachten nun

1\-05 1\-%5 1 1\t
exp ((x2+x+-—-) )=1+(x2+x+~——) +-—(x2+x+~—)

12 12 2 12
1 1\ -0s 1\-05 1 1\-1
| 42 i 1 2 i T 42 o
+.§v! (x + %+ 12) < +(x +x+12) +2(x +x+12)
L1 ( SR )-1 1
— X e . .
6 12 (%% + x + 1/12)%5 0,25
Dieser letzte Ausdruck ist kleiner als 1 4 1/x, weil
(x2+x+ i R VS 1(x2+ L)
12 2 iz) T 12
1 1

PRt rr112%5 025 " x
wegen

0,5 1
6 2 S
(" TE 12) T @ A+ 11295025

<6x+ 3+ (2x)?

erfiillt ist, denn diese Ungleichung ist gleichbedeutend mit

9 + 1 < 10 L 1
16x  64x2 16x  48x2°

Damit ist der Satz 1 bewiesen. Wenn man weitere Einschrinkungen fiir x voraussetzt,
kann die Abschitzung nach unten verschirft werden. So ergibt sich z.B.

Satz 2.

<e.

Ist 0 <c < ! nd x= . so gilt 1+1 ot
122 = 12: 8 x

Beweis. Wir brauchen jetzt nur zu zeigen, dass

1
exp ((»2+x+¢)%) >14 (22 + x+¢c)%5 + 7 (#%2 + x 4 ¢)7?

1 1
+—6—(x2+x+ 0)"¥ > 1 +—
richtig ist. Mit der letzten Ungleichung sind aber gleichbedeutend die folgenden:

1 1
(22 + x + ¢)~05 . (1 + g(xa—l—x—}- c)“l) >x‘1~?(x2+x+c)”1;

6c\ 2
(6x2 + 6x+ 6¢c+ 1)2 > (x2+ x + ¢) (6x+3+~£~) ;
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diese Ungleichung ldsst sich unter Beriicksichtigung der Voraussetzungen iiberfiihren
in

72¢%  36¢3
+

3x2 (1-12¢) + 3x (1-24¢) + 1 > 72¢% + 33¢c + _
x

Die linke Seite ist wegen x (1-12¢) = 1 aber = 7 und wegen ¢ < 1/12 und x > 1 ist
die rechte Seite < 4, sodass wir damit alles bewiesen haben.

H.-J. Kanold, TU Braunschweig

LITERATURVERZEICHNIS

[1] H.-J. KaNoLD, Ein einfacher Beweis der Stirlingschen Formel, El. Math. 24, 109-110 (1969)

Uber die diophantische Gleichung (1 + & + £2) (1 + 1 + 7?) = &2

1. Wegen der Invarianz der quadratischen Form 1 + & + £2 gegeniiber der

Transformation £ = — § — 1 und der Symmetrie der zu betrachtenden diophan-
tischen Gleichung
A+E+E) A+ n+9?) = (1)

erhalten wir mit te Z in (£, ¢, 1+t + t2) bzw. ({, — ¢ — 1, 1 4 £ + #2) unmittelbar
zwei triviale Losungstripel von (1). Wir stellen weiterhin fest, dass

(18, 2, 49) - @
(2, 653, 1729) (3)

nichttriviale Lésungen von (1) sind, die wegen der bereits erwdhnten Invarianz von
1 + & + &% und der Symmetrie von (1) zu weiteren Losungstripeln fiihren.

2. Man iiberzeugt sich nun weiter davon, dass die beiden folgenden Identititen
richtig sind:

E+1 2 E—mn\?
1++21++2=ﬁ+mm+9+ﬂw—)
A+&+8) 1 +9+ 97 7 > 5 @

fir &=17(2
1\ ]
4+ Ut o) = (en+ S50 1)
E+m+1)2 i
#3(SEIEL) esn0,

so dass wir mit den entsprechenden Bezeichnungen in beiden Fillen auf die diophan-
tische Gleichung

x4+ 392 =22 (6)
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gefithrt werden, die fiir x > 0, ¥y > 0 und z > 0 die Ldsungen

a a
x=l~2—(u2——3v2) , y=duv, z=~2—(u2+3v2)

besitzt, wobei #, v und d natiirliche Zahlen sind und 4 eine gerade Zahl ist, wenn
nicht » und v beide ungerade sind. (Siehe etwa [3], Kap. 5.3, Exercise 2)

3. Wir betrachten nun zunichst den Fall & = # (2). Dann ist:

d
x=‘-—(u2—3v2)=§n+5—ﬂ+1 (7)
2 2
y—duv— "1 (8)
2
a
z——z—z—(u2+3v2)=§', (9)
woraus wir sofort
a
C=—2—(u2+3v2), E=2duv+ 9 (10a)

erhalten. Setzen wir dann § = 2du v + % in (7) ein, so erhalten wir durch Aufl6sen
einer quadratischen Gleichung fiir %:

Ty = —ﬁﬁ—;’—i}— + % [4d2u?v® 4+ 2 | d (u? — 307 | — 3]0, (10b)
Fird = 2, u = 1, v = 4 wird die Quadratwurzel ganz, und man erhilt die oben ange-
gebene Losung (2) von (1), wenn man das positive Vorzeichen der Wurzel beriick-
sichtigt. Die Gleichungen (10a, b) leisten nun im Prinzip die Losung der diophan-
tischen Gleichung (1), abgesehen davon, dass wir jetzt die Félle, d.h. Werte von 4, »
und v, bestimmen miissen, fiir die

4d2uv®+2|dwut—30%)|—3=0Q% (11)
mit einer ganzen Zahl @ gilt. In dieser Hinsicht kénnen wir nun beweisen:

Satz 1. Fiir £ = 5(2) besitzt (1) unendlich viele Losungen, die sich bereits bei festem
d = 2 und festem # = 1 konstruktiv bestimmen lassen.

Beweis: Fiir festes d = 2 und # = 1 geht (11) tiber in

Q% — 28 v2 = —17. (12)
Mit (12) betrachten wir gleichzeitig die Pellsche Gleichung
Q02— 28v2=1, (13)

die die Fundamentallosung (127, 24) besitzt, (Siehe [2], S. 309). Mit der Fundamental-
16sung von (13) sind unendlich viele Lésungen von (13) bekannt ([1], Theorem 8.5).
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Wenden wir dann auf Gleichung (12) Theorem 8.8 aus [1] an, indem wir die Lésung
(21,4) von (12) mit heranziehen, so ist die Beh. von Satz 1 vollstindig bewiesen.

Beispiel 1: Mit Hilfe von Satz 1 erhilt man in (5355, 1012) ein weiteres Lésungs-
paar von (12), so dass sich fiir das Parametertripel (d, #, v) = (2, 1, 1012) die Lsung
(4701, 653, 3072433) von (1) ergibt, wenn man in (10b) das positive Vorzeichen
der Wurzel beriicksichtigt. Es ist ndmlich mit dem Kreisteilungspolynom F,(x):
F;(4701) - F4 (653) = (7-13-19 - 1777)2

4. Wir betrachten sodann den Fall £=£ # (2). Dann setzen wir nach 2.:

a 1
x:‘_(uz_g,vz) =5n+l§+_’7+__1
2 2
1
2
a
z=—2—(u2+3v2)=f,
woraus wir analog 3. erhalten:
d
C=E(M2+3v2), E=2duv—n-—1 (14)
und
2duv —1 1
ha= T L 4dure— 2 |d - 3% | — 3], 15
M, 2 2

Fird = 2, u = 41, v = 4 wird die Quadratwurzel ganz, und man erhélt fiir das positive
Vorzeichen der Wurzel die oben angegebene Losung (3) von (1). Wie unter 3. betrach-
ten wir dann die diophantische Gleichung

4d2u2 02 —2 |d (w2 —30%) | — 3= P2 (16)

Satz 2. Fiir §=£ #(2) besitzt (1) unendlich viele Losungen, die sich bei festem
d = 2 und festem v = 4 konstruktiv bestimmen lassen.

Beweis: Fiir festes d = 2 und v = 4 geht (16) iiber in

256 u2 — 4 | u® — 48 | — 3 = P?, (17)
und man iiberzeugt sich leicht davon, dass (17) fiir | # | < 7 mit P € Z nicht méglich
ist. Also erhalten wir fiir |u | > 7

P2 — 252 u? = 189 (18)
mit der Losung (651,41). Die Gleichung (18) besitzt zwar auch die Losung (21,1),

die uns aber wegen | # | > 7 nicht unmittelbar zu einer weiteren Lsung von (1)
verhilft. Mit (18) gemeinsam betrachten wir (19)

P?—252u2 =1 (19)

mit der Fundamentallésung (127,8). Wenden wir nun wie beim Beweis von Satz 1 die
Sétze 8.5 und 8.8 aus [1] an, so ist damit die Existenz unendlich vieler Lésungen auch
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im Fall £=£ 7(2) bewiesen und ein konstruktives Verfahren zur Bestimmung von
nichttrivialen Losungen geliefert.
Beispiel 2: Durch Anwendung von Satz 2 erhilt man in (165333,10415) ein weiteres
Losungspaar von (18), mit dem sich fiir das Parametertripel (d, #, v) = (2, 10415, 4)
die Losung (165986, 653, 108472273) von (1) ergibt. Es ist ndmlich:
Fg4 (165986) « F4 (653) = (7-13-19 - 43 - 1459)2,

Beispiel 3: Beim Beweis von Satz 2 haben wir bereits bemerkt, dass (18) die Lésung
(21,1) besitzt, die nach den erwdhnten Sitzen aus [1] zur Losung (4683, 295) von (18)
fiihrt und damit zu dem Parametertripel (4, «, v) = 2, 295, 4), mit dessen Hilfe
wir die Losung (4701, 18, 87073) von (1) bestimmen. Es gilt:
F, (4701) - F4 (18) = (72 - 1777)2.

Dieter Bode, Braunschweig

LITERATURVERZEICHNIS
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Eine Kennzeichnung endlicher nilpotenter Ringe

J. Levitzki [1; S. 441, Satz 6] zeigt, dass jeder nile Ring [2; S. 206], der die
Maximalbedingung fiir links- und rechtsseitige Ideale erfiillt, nilpotent [2; S. 200]
ist. Demnach ist ein endlicher Ring genau dann nilpotent, wenn er nil ist. Diese
Aussage kann verschirft werden:

Ein endlicher Ring R ist genau dann nilpotent, wenn O das einzige idempotente
Element [2; S. 208] von R 1st.

Zum Beweis dieses Satzes bleibt zu zeigen:

Ein endlicher Ring R ist genau dann nil, wenn 0 das einzige idempotente Element
von R ist.

Beweis: N bezeichne die Menge der natiirlichen Zahlen.

Sei R nil. Wir zeigen:

Fiir » € R folgt aus 12 = 7 stets r = 0.

Aus 72 = 7 folgt #i +1 = ¢ fiir alle i € N und damit ™ = 7 fiir alle m € N. Da R nil ist,
gilt » = 0 mit #» € N. Hiermit folgt weiter » = 7" = 0. Somit ist 0 das einzige idem-
potente Element eines nilen Ringes.

Sei nun 0 das einzige idempotente Element eines Ringes R. Wir zeigen zuerst:

(1) Firre Rund 1 < # € N folgt aus #* = r stets r = 0.

O.B.d.A. sei » > 2, da die Giiltigkeit der Aussage (1) fiir » = 2 vorausgesetzt ist.
Aus r* = r folgt

(,m»—l)z = 302 — gn—29n — gn-3 y — yn—1
Da r"—1 demnach idempotent ist, gilt »»—! = 0. Es folgt

r=r=r"1y=0=0.
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Wir zeigen weiter:
Ist R endlich und gilt (1), so ist R nil.

Sei r € R. Da R endlich ist, sind nicht alle Potenzen 7' mit 7 € N voneinander ver-
schieden. Also gibt es #, m € N mit m > =, so dass

AU G L &
Es folgt
(ym—n)itlyn — (ym—n)i ym
fir alle 1 € N und hiermit weiter
(pm=m)ngn — yn
Somit ist
(Pr)m=ntl — (pmym—n yn — (ym—n)n yn — yn

Nach (1) folgt hieraus #” = 0. Demnach ist ein endlicher Ring R nil, wenn 0 das
einzige idempotente Element von R ist.

Walter Streb, Pegnitz BRD

LITERATURVERZEICHNIS

(11 J. Levitzki, Solution of a Problem of G. Koethe, Amer. J. Math. 67, 437-442.
[2] B. L. vaAN DER WAERDEN, A4lgebra, zweiter Teil, (Springer-Verlag, Berlin, Gottingen, Hei-
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Aufgaben

Aufgabe 669. Es bedeute W einen Einheitswiirfel der Kantenlinge 1 im #-
dimensionalen euklidischen Raum R mit dem Ursprung 0 € R als Mittelpunkt. Der
Einheitsvektor # kennzeichne eine Richtung in R. Das planare statische Moment von
W beziiglich der durch den Ursprung 0 gehenden zu # orthogonalen Ebene {x, #) =0
kann durch das sich iiber W erstreckende Integral

w
Tu—_—./l (x, uy | dx (*)

dargestellt werden, wobei x den Ortsvektor eines in W variablen Punktes x und dx
das Volumdifferential an der Stelle x anzeigen. Wie weiter oben soll die Eckklammer
die Bildung des skalaren Produkts vorschreiben. — Es ist nachzuweisen, dass fiir alle
n > 1 und alle Richtungen # die Ungleichung
1
T, < —
YT 4
gilt. Wie unmittelbar ersichtlich, gilt Gleichheit fiir jede der 2 » Kantenrichtungen
von W. H. Hadwiger, Bern
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