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Dannist V(T ) = ¢" " F(1;) =2¢"~1+ 2 (n — 1) g2

und W, (T,)) =0 (¢~ %) firv=2,...,n.

Wegen G(T ) = 0 folgt daraus mit ¢ - 00: 28, + b, <0

und mit b, < 1 folgt daraus b, < — 1/2. Damit ist Satz 3 bewiesen.

J. M. Wills, TU Berlin
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Ein isoperimetrisches Problem mit Nebenbedingung

Als Variante des klassischen isoperimetrischen Problems bestimmt Besicovitch
in [1] u.a. solche konvexen Bereiche des euklidischen R?, welche in einem gegebenen
kompakten konvexen Bereich K enthalten sind und bei vorgegebenem Umfang F
maximalen Flicheninhalt V liefern. Es zeigt sich, dass dabei die inneren g-Hiillen
K¢, g € [0, 7], r = Inkugelradius von K, d.s. die abgeschlossenen Hiillen der Vereini-
gungen aller in K enthaltenen Kugeln vom Radius g, eine ausgezeichnete Rolle spielen.

Wir interessieren uns in dieser Note fiir folgendes verwandte Problem im R,
n > 2:

Ist P ein konvexes Tangentialpolyeder an seine Inkugel S,, » > 0, also V(P)/F(P) =
V(S,)|F(S,) = r/n, so suchen wir das (nach dem Auswahlprinzip sicher existierende)
max V(I')/F(I')| I" konvex, S, C I' C P und die zugehdrigen Extremalkérper.

Im R?lautet das Ergebnis

V) _ V(P _ V(P = a VP)]
FI) = Fpw) [V(P) — z 7]
und Gleichheit gilt nur fiir I' = P,

(1)
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Fiir » > 2 ist das Problem noch offen, fest steht aber, dass i.a. die inneren
Hiillen P¢ dann nicht mehr Extremalkorper sind, wie ein Beispiel') am Ende dieser
Note zeigt.

Beweis von (1):2). Sei I'y ein Extremalbereich im Sinne der Aufgabenstellung und
V(I'g)/F(I'y) = P, Offensichtlich ist F(I'g) > 2ar. Nun gibt es zum fest vorgeschrie-
benen F = F(I')) einen isoperimetrischen Eibereich K, K, C P, F(K,) = F([',)
derart, dass V(K,) den grosstmoglichen Wert von V reprisentiert. Also wird (a)
Py < V(Ko)/F(K,).

Nach Besicovitch ([1], Variant III, S. 45ff.) ist aber K, eine innere p-Hiille
Pe¢, und es gilt demnach S, C K, C P und somit auch () po = V(K,)/F(K,). Demnach
ist py = V(Ko)/F(K,).

Setzt man f(g) = V(P?)/F(P?), so ist offenbar p, das Maximum von f(g) im Inter-
vall [o, 7]. Sind V, F die Masszahlen von P, » F = 2V, so ergibt sich

[V (r* — %) + w72 0%
f[F (r—o) o] +2xn7’

1) =

eine in [o, 7] konkave Funktion, und nach elementarer Ausrechnung die rechte Seite
von (1).

Im R3 seien P,, m = 3,4,5... gerade Zylinder mit der Hohe » = 2 und regel-
missigen m-Ecken mit Inkreisradius » =1 als Grundfliche. Also P, Tangential-
polyeder an die Einheitskugel S und im Sinne der Blaschkeschen Metrik lim P, = T,

m—- 00
wobei T ein gerader Kreiszylinder mir » = 1 und # = 2 ist. Wire wie im R2 fiir jedes m

eine innere p-Hiille P2™, o(m) € [0, 1], von P, Extremalkérper im Sinne unserer
Fragestellung, so gébe es eine Teilfolge m,, v = 1,2, ..., mit lim p(m,) = g,, 0o € [0, 1],
y—+00

lim P8 ) = T, und es miisste gelten
y—00 v

v(Te) _ V(D)
F(T®%) = F(I)

fiir jedes konvexe I'mit SCI'C T. (2)

(2) gilt jedoch fiir kein g, € [0, 1], wie wir im folgenden zeigen werden.

a) Es ist V(T9)/F(T° = V(TY)/F(T*) = 1/3, und eine leichte Rechnung zeigt
dldg [V(T®)|F(T9)] |,-0 > 0.

b) Sei I, ,, 0 € (0, 1), A € (0, 1/g), der konvexe Korper, den man durch affine 4-Dila-
tation von 7% in Richtung seiner Symmetrieachse und anschliessender Verkiirzung
des zylindrischen Anteils um die Lange 2(A — 1) erhdlt. Ersichtlichist SCI,, CT
und I, = T%, Wir bezeichnen F,/ = 0/0 ¢ [F(I'y))lla=1, FX' =0/0 A[F(I'y)]lr-1
und analog V,/, V.

1) Dieses Beispiel wurde den Verfassern von H. Hadwiger zur genaueren Untersuchung vorge-
schlagen.

?) Dieser Beweis wurde den Verfassern von H. Hadwiger mitgeteilt, nachdem sie einen ele-
mentaren aber lingeren Beweis, der sich nicht auf das Ergebnis von Besicovitch stiitzte,
vorgelegt hatten.
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Eine etwas lingere Rechnung ergibt dann
BV, _#e
E' V) 3
Also gibt es zu jedem T°?, g € (0, 1) ein I, ; mit V(T°)/F(T¢) < V(I 1)/ F(I,, ).

B. Herz und J. Kaapke, TU Berlin

D:

[—3n%+ 2272 —40](1—9) £ 0 fir g€ (0,1).
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Kleine Mitteilungen
Uber einige elementare Abschitzungen von e

In einer fritheren kleinen Note [1] wurde die Zahl e durch einfache Ausdriicke

nach unten und nach oben abgeschitzt. Diese Schranken sollen jetzt weiter verbessert
werden.

Satz 1. Fiir x > 0 gilt:

1\*+0,5-1/8x 1 Vx”-{—x 1 Vx’+x+1l12 1\*#+0,5
14— <(1+= <e<(1+= <(1+=
X X X X

Bewers. Es ist
1 1 1 1

x+x2  x(x+1) x x+1°

Damit erhalten wir

1/1 1 1 1
2 -0,5 2 -0,5 1 [ _ Z(x2 -5 14—,
exp ((x%+ x)=%%) > 14 (42 + x) +2(x x+1)+6(x+x) >1+—
weil " i ’ i
%% + Ox +
2 -0,5 , - ———
(% + %) 642 + 6x >2x+2(x+1)

wegen 48x% + 12x + 1 > 45x% + 9« richtig ist.

Ist ’
x = 0,25, so folgt x+0,5—~§>0
und
0,5 1 2——2 1 1 ! <x2+x;
(x+ ) '—'"8}—) =X +x_"8;‘ 8x )
ist

1 N
0 < x<0,25, so folgt x+0,5——§;<x<|/x2—|—x.
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