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Dann ist V(Tq) q"-* F(Tq) 2qn~1 + 2 (n - 1) qn~2
und Wv (Tq) 0 (qn~2) im v 2, n.
Wegen G(Tq) 0 folgt daraus mit q -> oo: 2b1 + b0 < 0
und mit &0 < 1 folgt daraus bx < — 1/2. Damit ist Satz 3 bewiesen.

J. M. Wills, TU Berlin

LITERATURVERZEICHNIS

[1] Bonnesen-Fenchel, Theorie der konvexen Korper (New York, Chelsea Publ. Co. 1948).
[2] J. Bokowski und J M Wills, Eine Ungleichung zwischen Volumen, Oberfläche und Gitter¬

punktanzahl konvexer Mengen im Rz. Erscheint in Acta Math Hung. Bd. 25.
[3] H. Groemer, Eine Bemerkung uber Gitterpunkte in ebenen konvexen Bereichen, Areh. Math. 10,

62-63 (1949)
[4] H Hadwiger, Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, (Springer, Berlin 1957).
[5] H. Hadwiger, Altes und Neues uber konvexe Korper (Birkhauser, Basel 1955).
[6] H. Hadwiger, Volumen und Oberflache eines Eikorpers, der keine Gitterpunkte überdeckt.

Math Z. 116, 191-196 (1970).
[7] L K. Hua, Abschatzungen von Exponentialsummen, Enzyklopädie Math. Wiss. Bd. I, 2, 29

(Teubner, Leipzig 1959).
[8] S. Krupizka, Über die Anzahl der Gitterpunkte in mehrdimensionalen konvexen Korpern,

Czechoslovak Math J 7 (82) 550-552 (1957).
[9] M Nosarzewska, Evaluation de la difßrence entre Vaire d'une region plane convexe et le

nombre des points aux coordonnees entihres couverts par eile, Colloq. math. 1, 305—311 (1947).
[10] J. E Reeve, On the Volume of Lattice Polyhedra Proc. Lond. math. Soc. (3) 7, 378-395 (1957).
[11] J. E. Reeve, A Further Note on the Volume of Lattice Polyhedra. J. Lond. math. Soc. 34,

57-62 (1959).
[12] Warmus, Kurzmitteilung Colloq. math. 7, 45-46 (1947).

Ein isoperimetrisches Problem mit Nebenbedingung

Als Variante des klassischen isoperimetrischen Problems bestimmt Besicovitch
in [1] u. a. solche konvexen Bereiche des euklidischen R2, welche in einem gegebenen
kompakten konvexen Bereich K enthalten sind und bei vorgegebenem Umfang F
maximalen Flächeninhalt V liefern. Es zeigt sich, dass dabei die inneren o-Hüllen
Ke, q e [o, r], r Inkugelradius von K, d.s. die abgeschlossenen Hüllen der Vereinigungen

aller in K enthaltenen Kugeln vom Radius q, eine ausgezeichnete Rolle spielen.
Wir interessieren uns in dieser Note für folgendes verwandte Problem im Rn,

n > 2:
Ist P ein konvexes Tangentialpolyeder an seine Inkugel Sr, r > 0, also V{P)/F(P)
V(Sr)/F(Sr) r/n, so suchen wir das (nach dem Auswahlprinzip sicher existierende)
max V(r)/F(r) \ F konvex, SrCFCP und die zugehörigen Extremalkörper.

Im R2 lautet das Ergebnis

V(F) ^ V(F») _ [rV(P)-r2]/nV(P)]
F(r) ~ F(PeQ) *ü [V(P)-nr2]

und Gleichheit gut nur für T P*0.
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Für n > 2 ist das Problem noch offen, fest steht aber, dass 1 a die inneren
Hüllen Pe dann nicht mehr Extremalkorper smd, wie em Beispiel1) am Ende dieser
Note zeigt

Beweis von (1) 2) Sei _T0 em Extremalbereich im Sinne der Aufgabenstellung und
V(ro)/F(ro) Pq Offensichtlich ist F(ro) > 2nr Nun gibt es zum fest vorgeschriebenen

F F(Tq) einen isoperimetrischen Eibereich K0, KQ C P, F(K0) F(ro)
derart, dass V(K0) den grosstmoghchen Wert von V repräsentiert Also wird (a)

P0 < V(K0)IF(K0)
Nach Besicovitch ([1], Vanant III, S 45ff) ist aber K0 eme innere o-Hulle

PQ, und es gilt demnach SrC K0C P und somit auch (b) ft0 > V(K0)/F(Kq) Demnach
ist p0 V(K0)IF(K0)

Setzt man /(o) V(Pe)/F(Pe), so ist offenbar fiQ das Maximum von f(q) im Intervall

[o, r] Sind V, F die Masszahlen von P, r F 2 V, so ergibt sich

Ho)- [V(r2-Q2) + nr2Q2]
/W}

r[F (r-q) o] +2jir'
eine m [o, r] konkave Funktion, und nach elementarer Ausrechnung die rechte Seite

von (1)

Im Rs seien Pm, m 3, 4, 5 gerade Zylinder mit der Hohe h 2 und
regelmassigen w-Ecken mit Inkreisradius r 1 als Grundflache Also Pm Tangentialpolyeder

an die Emheitskugel S und im Sinne der Blaschkeschen Metrik hm Pm T,

wobei T em gerader Kreiszylinder mir r 1 und h 2 ist Ware wie im R2 fur jedes m
eme innere £-Hulle P$m), q(m) e [0, 1], von Pm Extremalkorper im Sinne unserer
Fragestellung, so gäbe es eme Teilfolge mv, v 1, 2, mit hm g(mv) o0, o0 e [0,1],

V—*-oo

hm P£ (;V TQ\ und es musste gelten

^5~ > -^Q- fur jedes konvexe 71 mit S C T C T (2)
_P I yo) -^ (-* J

(2) gilt jedoch fur kein £0 e [0, 1], wie wir im folgenden zeigen werden

a) Es ist V(T°)/F(T°) F(J1)/F(rl) 1/3, und eme leichte Rechnung zeigt
d/dQ[V(T*)/F(T*)} |c.o>0

b) Sei rQ A, q G (0,1), X e (0, l/@), der konvexe Korper, den man durch affine A-Dila-
tation von Te m Richtung seiner Symmetrieachse und anschliessender Verkürzung
des zyhndnschen Anteils um die Lange 2(X — 1) erhalt Ersichtlich ist S C rg A CT
und reil J«, Wut bezeichnen Fe' d/ö q [Ff, A)] |A_ x, Fx' d/. A [F(rJ] |A. t
und analog Fe', FA'

J) Dieses Beispiel wurde den Verfassern von H Hadwiger zur genaueren Untersuchung
vorgeschlagen

2) Dieser Beweis wurde den Verfassern von H Hadwiger mitgeteilt, nachdem sie einen ele¬

mentaren aber längeren Beweis, der sich nicht auf das Ergebnis von Besicovitch stützte,
vorgelegt hatten
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Eine etwas längere Rechnung ergibt dann

D
F' V
FS VS

TT2 Q*
[-37i;2 + 22j7;-40](l-^) 4= 0 für q e (0, 1)

3

Also gibt es zu jedem 7* o e (0, 1) ein Te>A mit V{T*)jF{T*) < V(re>A)/F(rQtA).

B. Herz und J. Kaapke, TU Berlin
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Kleine Mitteilungen
Über einige elementare Abschätzungen von e

In einer früheren kleinen Note [1] wurde die Zahl e durch einfache Ausdrücke
nach unten und nach oben abgeschätzt. Diese Schranken sollen jetzt weiter verbessert
werden.

Satz 1. Für x > 0 gilt:

iy + 0.5-1/8* / \\]/V^ iy*a + * + l/12 / iy + o.5.
1 + 7J <(1 + 7J <e<(1 + 7J <(1 + 7,

Beweis. Es ist
1 111x-\- x2 x(x+l) x #4-1

Damit erhalten wir

exv((x2 + x)-°>5)>l + (x2 + x)-Q>s + -^(- Lr)+i(j»ft + jr)-i.5>i + l2 \x x+lj 6 x
weil

(* + X> '
6x2 4- 6x ~ > 2^" + 2 (* 4-1)

wegen 48#2 4- 12% 4- 1 > 45#2 4- 9# richtig ist.

Ist
1

* ^ 0,25, so folgt x 4- 0,5 - — > 0
8#

und

(x+°'5-iy-x2+x-^{i-^)<xi+x^
ist

0 < * < 0,25 so folgt x 4- 0,5 - — < x < Vx2 + x.
Sx
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