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Zur Gitterpunktanzahl konvexer Mengen

1. Einleitung

Die Anzahl der Gitterpunkte in speziellen konvexen Mengen spielt in der
Zahlentheorie eme grosse Rolle In der Geometrie der Zahlen beschrankt man sich
auf zentralsymmetrische konvexe Mengen, in der additiven analytischen Zahlentheorie

vor allem auf Kugeln bzw Ellipsoide um den Nullpunkt Die dort benutzten,
oft tiefhegenden Methoden und Ergebnisse erlauben aber nur zum kleinen Teil eine
Übertragung auf beliebige konvexe Mengen

Ziel der vorliegenden Arbeit ist es, Schranken fur die Gitterpunktanzahl beliebiger

konvexer Mengen zu finden (Es werden nur Gitterpunkte mit ganzzahligen Koordinaten

betrachtet) Dazu wird zuerst gezeigt, dass gewisse einfache Klassen von
Ungleichungen nicht möglich smd Dann werden mit einer einfachen und allgemeinen
Methode einige einfache Ungleichungen fur die Gitterpunktanzahl aufgestellt Bei
den interessanteren Ungleichungen wird ausserdem untersucht, inwieweit sie
verbessert werden können Vor den eigentlichen Ergebnissen werden die benotigten
Definitionen und bisher bekannte Satze zusammengestellt

2. Definitionen

$tn sei die Menge der beschrankten konvexen Mengen des w-dimensionalen

euklidischen Raumes Rn (n > 1) Zu einem K eRn sei K der zugehörige konvexe

Korper Em stetiges Funktional / f(K) sei durch f(K) f(K) definiert (Diese
Konvention ist unwesentlich, erweist sich aber als recht praktisch) Zu einem K e il"
sei V V(K) sein Volumen, F F(K) seine Oberflache, R R(K) bzw r r(K)
sein Um- bzw Inkugelradius, D D(K) sein Durchmesser, d d(K) seme Dicke,
Wv WV(K), v 0,1, n seine Minkowskischen Quermassmtegrale (also WQ V,
nW1 F) und G G(K) die Anzahl der Gitterpunkte aus K G ist im Gegensatz zu
den anderen Funktionalen weder stetig noch bewegungsinvariant noch homogen Fur
alle hier definierten Funktionale / ausser G gilt also f(K) f(K)

Wie üblich sei an das Volumen der tt-dimensionalen Emheitskugel Es ist
oc„ nnl2jr {nß + 1), insbesondere ax 2 Man setzt noch a0 1 Fur q > 0 sei KQ

die äussere Parallelmenge, fur — r < q < 0 die innere Parallelmenge, und KQ ^
fur q < —r

(Zu allen Definitionen vgl fl], [4] oder [5]).
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3. Bekannte Sätze

Das bekannteste Ergebnis ist Minkowskis Fundamentalsatz aus der Geometrie
der Zahlen (s.z.B. [1]):

K eRn kompakt, zentralsymmetrisch und V > 2n => G > 3.

Krupizka [8] zeigt für Ke$tn mit 0 eK, dessen Rand kein Geradenstück enthält
und gewisse weitere Krümmungseigenschaften aufweist:

G{X K) V(X K) + 0 (A»-2«/<"+1)) (für X -> oo)

Beschränkt man sich hier auf Kugeln um den Nullpunkt, so hat man
Verallgemeinerungen des klassischen Gaußschen Kreisproblems der additiven Zahlentheorie.
Man erhält dann etwas bessere Ergebnisse als Krupizka: Für n 2: 0(Xlbl2Z), für
n 3: 0(Xn^), für n 4: 0(X2 log X), für n > 4: 0(A*-2), (s. dazu [7]).

Wie schon das Beispiel des Würfels W {(% #n)/| #f. | < 1, i 1,..., n)
zeigt, gilt der Satz von Krupizka nicht für beliebige K. Denn sei X q ganz. Dann ist
G(qW) (2 q + 1)", 7($»F) (2 ?)", also G(qW) V(qW) + O^»-1).

Für gitterpunktfreie konvexe Mengen zeigt Hadwiger [6]: K e Rn mit inneren
Punkten und G 0 => V < F/2.

Speziell für den R2 gibt es mehrere Ergebnisse: Nosarzewska [9] zeigt: KeSt2
mit inneren Punkten: — (F/2 + 1) <V — G < F/2. (Für allgemeinere, nur durch
eine rektifizierbare Jordankurve begrenzte ebene Bereiche gilt nach Warmus [12]
sogar: | V — G -h 1 | < cF mit c « 0,58, wenn nur F > n ist).

Für ebene gitterpunktfreie konvexe Mengen bei beliebigen Gittern beweist
Groemer [3] eine Ungleichung zwischen Affinumfang und Gitterdeterminante.
Zum Schluss sei noch Reeve [10,11] zitiert, der für die konvexe Hülle H von
Gitterpunkten im Rz und R* Ungleichungen zwischen V(H), der Anzahl der Gitterpunkte
aus dem Innern von H und der Anzahl der Gitterpunkte auf dem Rand von H
aufstellt.

4. Ergebnisse

Da alle vorkommenden Ungleichungen noch ziemlich grob sind, wird auf eine

Untersuchung, wann < und wann < gilt, verzichtet. Satz 1 beantwortet die Frage nach
der Existenz von Ungleichungen zwischen G und einem einzigen Funktional /. Sie sind
vom Typ G < <p(f) oder y>(f) < G, wobei cp bzw. %p irgendeine für 0 < / < oo
definierte reellwertige Funktion ist. Eine Ungleichung f(f) < G mit y>(f) < 0 für
0 < / < oo heisst trivial.

Satz 1

a) Es gibt keine Ungleichungen vom Typ

G <<p(r)t G < <p(d), G < (p(Wv) v 0,1,...,»- 2, n
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und keine nichttriviale vom Typ

y>(R) < G y)(D) < G tp(Wv) < G v 0,l,...,n
b) Es gibt nichttriviale Ungleichungen vom Typ

G<<p(R), G<cp(D), G<<p(Wn-J

y(r) < G \p(d) < G

Bemerkung: Satz 2 bringt 3 der 5 möglichen Typen, die allerdings keineswegs
bestmöglich sind.

Satz 2

Sei K e 5K Dann gilt

2n(y- lj< G < (D+ l)n

(]/n \n
R + L^-J mit W(r)

/ ]/n\*
an lr-—\ für r^

0 für r<

]/n

(i)

(2)

Ist K eRn eigentlich (d. h. r > 0), so gilt ausserdem

ir, V) < G < V (l + 1^1 mit y(r, V)

¥ x iür r > ?—
2

0 für r <
]/n

(3)

Zusatz: Notwendig für G < an (R + c)n bzw. G < V (1 + c'/f)» ist c > a«1^ bzw.
c' > an_1/". Für w 1 und 2 ist das auch hinreichend.

Bemerkung: Die Ungleichungen (1) sind sehr grob; (2) und (3) sind nur für
kugelähnliche K einigermassen scharf. Immerhin sind (2) und (3) in 1. Näherung optimal,
d.h. der Summand mit dem Homogenitätsgrad n ist an Rn bzw. anr" bzw. V. Die
rechten Seiten von (2) und (3) lassen sich vermutlich auch für n > 2 noch zu
aB(Ä -f c)n bzw. V (1 + c/r)n mit c an~1/n verbessern.

Aus dem Satz von Krupizka folgt noch, dass es zu jedem e > 0 ein £e so gibt,
dass G < ol„ (R -f- e)n für R > qs und an (r - e)n < G für r > ge.

Satz 3

Sei Ä" G JV1. Für die Gültigkeit von

Z®Wvbv<G<£®Wvcv (4)
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istnotwendig: bö < 1 bx< — 1/2 bv < 0 v 2,..., n ; cv > a„-1, v 0, 1,..., n
und hinreichend: b0 < 1 bx < — fn/2 bv < 0 v 2, n ; cv > (Yn/2)v,
v — 0 ,1 n.

Bemerkung: Satz 3 ist zweifellos interessanter als Satz 2. Zwar wird G durch mehr
Funktionale abgeschätzt, was die praktische Bedeutung schmälert; aber die
Ungleichungen sind linear und geben dazu mehr Informationen über den geometrischen
Sachverhalt. Bemerkenswert ist, dass für die Abschätzung von G nach oben alle Wv

benötigt werden, für die Abschätzung von G nach unten aber nur V und F.
Nach Satz 3 gilt also

Vermutlich sind aber die notwendigen Bedingungen zugleich hinreichend, d.h.
vermutlich ist:

V--<G<£®-±. (6)
^ v 0 aj>

Für n—l sind diese Ungleichungen trivialerweise richtig; für n 2 lauten sie:

V — F/2 < G < V 4- F/2 + 1, das ist das Ergebnis von Nosarzewska. Für n 3

wurde die linke Seite von (6) inzwischen bewiesen [2]. Wie scharf die rechte Seite von
(6) ist, zeigt das Beispiel eines Würfels Q {(%, xn)/0 < xx < q, i 1, n}
mit q ganz. Hier ist (siehe [4], S. 206 (54)): Wv olv qn~v, also

SO — + l)«=G.

5. Beweise

Beweis von Satz 1 a): Zuerst stellen wir fest, dass für jedes K eRn Wn an ist,
also keine Ungleichung G < cp(Wn) und keine nichttriviale Ungleichung f(Wn) < G

existieren kann.
Zum Beweis, dass die übrigen Ungleichungen nicht möglich sind, werden passende

Folgen uneigentlicher konvexer Mengen konstruiert. Die Beschränkung auf
uneigentliche Mengen ist dabei unwesentlich.

Sei Lq {(%, xn)/ö < xt < q x{ 0, i 2, n} q 1, 2, Dann ist
r(Lq) d(Lq) Wv(Lq) 0, v 0, 1, n - 2, aber G(Lq) q, und mit q -> oo

folgt, dass es keine Ungleichungen vom Typ G < cp(r), G < <p(d), G < <p(Wv),

v 0,1, n - 2 gibt.
Sei Qq {(% xn)/xt 1/2, 0 < *, < q, i 2, n} q e [0, oo). Dann ist D(Qq)

2 R(Qq) yn - 1 q und (siehe [4], S. 216 (55)) Wv(Qq) cv qn~v mit gewissen cv > 0

fürv= 1,. n- 1.

Mit q durchlaufen also auch R(Qq), D(Qq), Wv(Qq), v 1, n - 1 alle Werte
von 0 bis oo. Wegen G(Qq) 0 für jedes q folgt damit notwendig: \p(f) < 0 für
0 < / < oo;d.h. es gibt nur triviale Ungleichungen ip(R) < Gty>(D) < Gty>(Wv) < Gt

v 1,.. n — 1.
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Der analoge Schluss für W0=V folgt mit Tq {(%, xn)/0 < % < 1,
0 < xx < q, i 2, n}. Damit ist a) bewiesen.

b) In Satz 2 werden 3 der 5 Ungleichungen angegeben. Eine Ungleichung für d
erhält man aus der für r wegen 2 r < d < 2]Jn-\-1 r (nach dem Satz von Steinhagen,
siehe z.B. [1], S. 79). Eine Ungleichung für Wn-1 erhält man aus der für D wegen
a^/tt D < Wn-X < a*/2 D (siehe z.B. [4], S. 212 (44) und S. 219 (65) mit a 0 und
h D). Damit ist b) bewiesen.

Lemma 1. Sei K eil". Dann ist V (ÄL/F/2) < G(K) < V(Ky^2).
Beweis. Ist G(K) 0, so ist r(K) < ]/n/2 und K-f^/2 uneigentlich oder leer, also

V(K-f^/2) 0. Weiter ist V(Ky^/2) > 0, also die Behauptung bewiesen. Sei also

G(K) > 0. Jedem Gitterpunkt gte K werde ein achsenparalleler abgeschlossener
Würfel Qt der Kantenlänge 1 und mit gt als Mittelpunkt zugeordnet. Es gibt G solcher

<?, Sei Q Ü Q,.
1 1 _Für jedes x e Qt gilt \x — g%\ <}Jn\2. Also gilt K-f^jz CQ C i£W/2 und damit

V(K-yniz) < V(Q) < V(Kyn/2). Mit V(Q) G folgt die Behauptung.

Lemma 2. Für o e (-00, 00) gilt V(KQ) > V(K) + Q F(K).
Beweis. Wegen der Stetigkeit von V und F kann angenommen werden: K ist ein

Polytop. Weiter seien Ft die (n — 1)-dimensionalen Seitenflächen von K und ft deren
(n — 1)-dimensionales Volumen. Also F(K) JJft.

Der Beweis jetzt in 3 Teilen:
a) o > 0. Zu einem Ft sei Zt der Zylinder der Höhe o über der Grundfläche F{

von K nach aussen. Weiter sei Z (J Ze Dann ist F(Z) o F(Ä"). Wegen K D KuZ
folgt F(üTp) > 7(X) + V(Z) V(K) +q F(K).

b) —r < q < 0. Die Zt mit der Höhe | o | seien wie in a) erklärt, nur diesmal
seien sie ins Innere von K aufgetragen. Wieder sei Z (J Zt. Dann gilt V(Z) <

t
| o | F(K), da sich die Zt wegen der Konvexität von K teilweise überdecken. Andererseits

folgt aus der Definition von K: Kp K\Z, also wegen q < 0: V(Kp) > V(K)
-\q\ F(K) V(K) + Q F(K).

c) q < - r. Wie in b). Hier ist Kp <f>, also V(Kp) 0. Weiter ist KC Z, also

V(K) < V(Z) < | o | F(K), d.h. 0 > V(K) + ^ F(i^).
Beweis von Satz 2. Ist r > 0, dann gilt für die äussere Parallelmenge V(Kp) <

(1 + qjrY V(K) und für die innere: V(K-p) > (1 - o/r)* 7(K) (siehe z.B. [5], S. 66),
wenn nur o < r ist. Mit q )/w/2 und Lemma 1 folgen die Ungleichungen (3).

Ist Sr eine Inkugel, SR die Umkugel von K, so gilt: üTj/TT/2 C SR +y^/2 also

F(iC^/2) < an (JR + |/n/2)n und für r > ]/n/2 5r_^/2 C i^-|/«/2, alsoa„ (r - l/n/2)" <
V(K-ffi2). Mit Lemma 1 folgen daraus die Ungleichungen (2). Zum Beweis der rechten
Seite von (1) beachte man, dass für je zwei Gitterpunkte gt, gj e K gilt: | g( — gj \ < D.
Also ist das Q aus Lemma 1 enthalten in einem achsenparallelen abgeschlossenen
Würfel der Kantenlänge D + 1, und es ist G < (D + l)n.

Zum Beweis der linken Seite von (1) wird ein ganz anderer Gedanke herangezogen:

Sei K eRn und G(K) X n + p mit ganzen Zahlen X > 0 und 0 < ja < n.
Ist fjL 0, so kann K durch (höchstens) X verschiedene Hyperebenen Ht, die jeweils
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(mindestens) n der Gitterpunkte aus K enthalten, sukzessive ml+l (nichtabgeschlossene)

konvexe Mengen Ki mit G(Kt) 0, i 1, X + 1 zerlegt werden Ist
ja > 0, so wird i a eme weitere Hyperebene benotigt, und man erhalt X + 2 ver
schiedene i£t Wir fassen beide Falle zusammen, indem gegebenenfalls KA+2 ^ sei

Wir haben G(Kt) 0 fur i 1, A + 2 Weiter gilt TV{Kt) F(Ä") und F(X«)
/=i

< F(i£) fur * 1, A + 2 Wegen 6(2^) 0 folgt mit dem Satz von Hadwiger
V(K,) < (1/2) F(K,)

Also

y& * \SJ^ =s ^ fffl < (^-+1) Fm

oder

-(;-') < G

Beweis des Zusatzes Sei Se eme Kugel mit Radius e > 0 um einen Gitterpunkt
Dann folgt die Notwendigkeit der Bedingungen mit e -» 0 Die Hmlanghchkeit fur
n 2 folgt wegen 2}/n R > ti R > F/2 bzw 2 7/j/Sr r>V/r> F/2 und 7/rc ra > 1

aus G < V + F/2 4- 1 von Nosarzewska
Beweis von Satz 3 a) Hmlanghchkeit Sei KeRn Dann folgt die hnke Seite von

(4) aus Lemma 1 und Lemma 2 mit q — ]/n/2 n
Fur die äussere Parallelmenge KQ gilt nach Steiner V(KQ) 2J(v) ^ Qv Mit £ j/w/2
und Lemma 1 folgt die rechte Seite von (4) v=0

Da (4) richtig bleibt, wenn die bv verkleinert bzw die cv vergrössert werden, ist die

Hmlanghchkeit bewiesen

b) Notwendigkeit Wie im Beweis von Satz 1 werden passende konvexe Mengen
konstruiert Sei7 e [0, ri\ und Pf {(%, xn)/0 < x% < q fur i 1, 7, xt 0

für ^ ; 4- 1, n}
Nach [4], S. 216 (55) ist JF„ (PJ>) - f+')/('+0 ocvqn~v

Fur v < n - 7 ist also TT„ (P^) 0

Für v tt - 7 ist C) Wv (Pf) 0L.-J q>

Fur v > n - 7 ist W, (J*>) 0 (g^-1)

Wegen G(Pf) ^ folgt mit # -> 00 c, > oc"1 Wegen 3 e [0, n] beliebig folgt die
Behauptung fur die rechte Seite von (4)

Sei 7 e [0, n] und Qf {(xlt xn)/0 < x{ < q fur 1 1,. 7, x{ 1/2 fur
* j + l, **} Dann ist PF, (öj>) Wv (Pf) fur 7 0,1,. ,n.
Fur 7 0,1, n - 1 ist G(Qf) 0, also folgt mit q -» 00 &„_, < 0 fur 7 0,1,
w-l,dh -„<0{üry=l, ,n
Für 7 * ist V(Qf) G(ÖJ,)) «" und Wv ($*>) a„ g—, v 1,... n.

Mit q -> 00 folgt daraus 60 < 1.

Sei _Tf {(%,.. tfJ/0 < xt < 1, 0 < xt < qt % « 2,.. n}.
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Dann ist V(Tq) q"-* F(Tq) 2qn~1 + 2 (n - 1) qn~2
und Wv (Tq) 0 (qn~2) im v 2, n.
Wegen G(Tq) 0 folgt daraus mit q -> oo: 2b1 + b0 < 0
und mit &0 < 1 folgt daraus bx < — 1/2. Damit ist Satz 3 bewiesen.

J. M. Wills, TU Berlin
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Ein isoperimetrisches Problem mit Nebenbedingung

Als Variante des klassischen isoperimetrischen Problems bestimmt Besicovitch
in [1] u. a. solche konvexen Bereiche des euklidischen R2, welche in einem gegebenen
kompakten konvexen Bereich K enthalten sind und bei vorgegebenem Umfang F
maximalen Flächeninhalt V liefern. Es zeigt sich, dass dabei die inneren o-Hüllen
Ke, q e [o, r], r Inkugelradius von K, d.s. die abgeschlossenen Hüllen der Vereinigungen

aller in K enthaltenen Kugeln vom Radius q, eine ausgezeichnete Rolle spielen.
Wir interessieren uns in dieser Note für folgendes verwandte Problem im Rn,

n > 2:
Ist P ein konvexes Tangentialpolyeder an seine Inkugel Sr, r > 0, also V{P)/F(P)
V(Sr)/F(Sr) r/n, so suchen wir das (nach dem Auswahlprinzip sicher existierende)
max V(r)/F(r) \ F konvex, SrCFCP und die zugehörigen Extremalkörper.

Im R2 lautet das Ergebnis

V(F) ^ V(F») _ [rV(P)-r2]/nV(P)]
F(r) ~ F(PeQ) *ü [V(P)-nr2]

und Gleichheit gut nur für T P*0.
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