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Zur Gitterpunktanzahl konvexer Mengen

1. Einleitung

Die Anzahl der Gitterpunkte in speziellen konvexen Mengen spielt in der
Zahlentheorie eine grosse Rolle. In der Geometrie der Zahlen beschriankt man sich
auf zentralsymmetrische konvexe Mengen, in der additiven analytischen Zahlen-
theorie vor allem auf Kugeln bzw. Ellipsoide um den Nullpunkt. Die dort benutzten,
oft tiefliegenden Methoden und Ergebnisse erlauben aber nur zum kleinen Teil eine
Ubertragung auf beliebige konvexe Mengen.

Ziel der vorliegenden Arbeit ist es, Schranken fiir die Gitterpunktanzahl beliebi-
ger konvexer Mengen zu finden (Es werden nur Gitterpunkte mit ganzzahligen Koordi-
naten betrachtet). Dazu wird zuerst gezeigt, dass gewisse einfache Klassen von Un-
gleichungen nicht moglich sind. Dann werden mit einer einfachen und allgemeinen
Methode einige einfache Ungleichungen fiir die Gitterpunktanzahl aufgestellt. Bei
den interessanteren Ungleichungen wird ausserdem untersucht, inwieweit sie ver-
bessert werden konnen. Vor den eigentlichen Ergebnissen werden die bendtigten
Definitionen und bisher bekannte Sidtze zusammengestellt.

2. Definitionen

K" sei die Menge der beschrinkten konvexen Mengen des n-dimensionalen
euklidischen Raumes R" (n > 1). Zu einem K € 8" sei K der zugehérige konvexe

Korper. Ein stetiges Funktional f = f(K) sei durch f(K) = f(K) definiert (Diese
Konvention ist unwesentlich, erweist sich aber als recht praktisch). Zu einem K € ]
sei V = V(K) sein Volumen, F = F(K) seine Oberfliche, R = R(K) bzw. r = r(K)
sein Um- bzw. Inkugelradius, D = D(K) sein Durchmesser, d = d(K) seine Dicke,
W,=W,/(K),»=0,1,..,n seine Minkowskischen Quermassintegrale (also W,=V,
nW, = F) und G = G(K) die Anzahl der Gitterpunkte aus K. G ist im Gegensatz zu
den anderen Funktionalen weder stetig noch bewegungsinvariant noch homogen. Fiir

alle hier definierten Funktionale f ausser G gilt also f(K) = f(K).

Wie iiblich sei «, das Volumen der #n-dimensionalen Einheitskugel. Es ist
«, = n"2[I" (n/2 + 1), insbesondere «; = 2. Man setzt noch ay= 1. Fiir g > 0 sei K|
die dussere Parallelmenge, fiir —r <p < 0 die innere Parallelmenge, und K, = ¢
fir p < —7.

(Zu allen Definitionen vgl. [1], [4] oder [5]).
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3. Bekannte Sitze

Das bekannteste Ergebnis ist Minkowskis Fundamentalsatz aus der Geometrie
der Zahlen (s.z.B. [1]):

K € 8" kompakt, zentralsymmetrisch und V > 2" = G > 3.

Krupizka [8] zeigt fiir K € R" mit 0 € K, dessen Rand kein Geradenstiick enthilt
und gewisse weitere Kriimmungseigenschaften aufweist:

GAK) = V(A K) + O (A"~ (1) (fiir ) > o0) .

Beschriankt man sich hier auf Kugeln um den Nullpunkt, so hat man Verallge-
meinerungen des klassischen GauBschen Kreisproblems der additiven Zahlentheorie.
Man erhélt dann etwas bessere Ergebnisse als Krupizka: Fiir #» = 2: O(A1523), fiir
n = 3: O(A1B), fitir n = 4: O(A% log A), fiir n > 4: O(A*~2), (s. dazu [7]).

Wie schon das Beispiel des Wiirfels W = {(x;,...,%,)/|#;| < 1,¢=1,...,n}
zeigt, gilt der Satz von Krupizka nicht fiir beliebige K. Denn sei A = ¢ ganz. Dann ist
GlgW) = (24 + 1), V(gW) = (2 )", also G(gW) = V(gW) + Og"~).

Fiir gitterpunktfreie konvexe Mengen zeigt Hadwiger [6]: K € & mit inneren
Punkten und G =0=V < F/2.

Speziell fiir den R2 gibt es mehrere Ergebnisse: Nosarzewska [9] zeigt: K € R2
mit inneren Punkten: —(F/2+ 1) <V — G < F/2. (Fir allgemeinere, nur durch
eine rektifizierbare Jordankurve begrenzte ebene Bereiche gilt nach Warmus [12]
sogar: |V — G+ 1| < c¢F mit ¢ ~ 0,58, wenn nur F > 7 ist).

Fiir ebene gitterpunktfreie konvexe Mengen bei beliebigen Gittern beweist

Groemer [3] eine Ungleichung zwischen Affinumfang und Gitterdeterminante.
Zum Schluss sei noch Reeve [10, 11] zitiert, der fiir die konvexe Hiille H von Gitter-
punkten im R3® und R* Ungleichungen zwischen V(H), der Anzahl der Gitterpunkte
aus dem Innern von H und der Anzahl der Gitterpunkte auf dem Rand von H auf-
stellt.

4. Ergebnisse

Da alle vorkommenden Ungleichungen noch ziemlich grob sind, wird auf eine
Untersuchung, wann < und wann < gilt, verzichtet. Satz 1 beantwortet die Frage nach
der Existenz von Ungleichungen zwischen G und einem einzigen Funktional /. Sie sind
vom Typ G < ¢(f) oder p(f) < G, wobei ¢ bzw. yp irgendeine fiir 0 < f < oo defi-
nierte reellwertige Funktion ist. Eine Ungleichung (f) < G mit ¢(f) < 0 fur
0 < f < o0 heisst trivial.

Satz 1

a) Es gibt keine Ungleichungen vom Typ

G<olr), G<og@d, G<@W,) »=0,1,...,n—2,n
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und keine nichttriviale vom Typ
p(R) <G, pyD)<G, pW,) <G »=0,1,...,n
b) Es gibt nichttriviale Ungleichungen vom Typ
G=¢[R), G=gD), G=gW,)
pir) =G, pd) <G,

Bemerkung: Satz 2 bringt 3 der 5 mdglichen Typen, die allerdings keineswegs best-
moglich sind.

Satz 2
Sei K € & . Dann gilt

2n(§——1)£6§(D+1)" (1)
. %y, (r_l_/zﬁ)” ftir rz-l—/én—

y)(r)gGgoc,,(R-i——g—) mit p(r) = 3 e (2
0 fir r<l/—21i

Ist K € 8" eigentlich (d. h. » > 0), so gilt ausserdem

- V(l—l/f—)nfﬁr r > —K’l

Yn \n 27 2
w(r,V)SGSV(1+—2—r) mit p(r, V) = | I TRE)

0 fﬁrr<K2z

Zusatz: Notwendig fiir G < «, (R +¢)" bzw. G <V (1 4 ¢'[r)* ist ¢ = a,l" bzw.
¢’ > a,~ U Fiir » = 1 und 2 ist das auch hinreichend.
Bemerkung: Die Ungleichungen (1) sind sehr grob; (2) und (3) sind nur fiir kugel-
dhnliche K einigermassen scharf. Immerhin sind (2) und (3) in 1. Ndherung optimal,
d.h. der Summand mit dem Homogenititsgrad » ist «, R* bzw. «, 7" bzw. V. Die
rechten Seiten von (2) und (3) lassen sich vermutlich auch fiir » > 2 noch zu
#,(R + ¢)" bzw. V (1 + ¢[r)" mit ¢ = &, /" verbessern.

Aus dem Satz von Krupizka folgt noch, dass es zu jedem & > 0 ein g, so gibt,
dass G < «, (R + &)" fiir R > g, und «, (¥ — &)" < G fiir v > o,.

Satz 3

Sei K € 8. Fiir die Giiltigkeit von

n

SO Wb, <G <3 OW,e, )

y=0 =0
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istnotwendig:by <1, b, <—1/2,5,<0,v=2,...,n; ¢, >oc—1,v—0 1,.
und hinreichend: bogl,bIS—}/ﬁ/z,bsz y=2,. ¢, = (Yn/2)”,
v=0,1,...,n.

Bemerkung: Satz 3 ist zweifellos interessanter als Satz 2. Zwar wird G durch mehr
Funktionale abgeschitzt, was die praktische Bedeutung schmilert; aber die Unglei-
chungen sind linear und geben dazu mehr Informationen {iber den geometrischen
Sachverhalt. Bemerkenswert ist, dass fiir die Abschidtzung von G nach oben alle W,
benétigt werden, fiir die Abschitzung von G nach unten aber nur V und F.

Nach Satz 3 gilt also

V——J{;F<G<2 (Vzn) (5)

Vermutlich sind aber die notwendigen Bedingungen zugleich hinreichend, d.h. ver-
mutlich ist:

F U w
V——<G< i 6
F =620 ©)

Fir » =1 sind diese Ungleichungen trivialerweise richtig; fiir » = 2 lauten sie:
V—-F/2<G<V+ F/2+ 1, das ist das Ergebnis von Nosarzewska. Fiir n = 3
wurde die linke Seite von (6) inzwischen bewiesen [2]. Wie scharf die rechte Seite von
(6) ist, zeigt das Beispiel eines Wiirfels Q, = {(xy, ..., #,)/0 <%, <g¢q, i=1,...,n}
mit ¢ ganz. Hier ist (siehe [4], S. 206 (54)): W, = a, ¢"*, also

- w
20— =g+1r=6.
r=0 v
5. Beweise
Beweis von Satz 1 a): Zuerst stellen wir fest, dass fiir jedes K € 8" W, = «, ist,

also keine Ungleichung G < @(W,) und keine nichttriviale Ungleichung w(W) <G
existieren kann.

Zum Beweis, dass die iibrigen Ungleichungen nicht méglich sind, werden passende
Folgen uneigentlicher konvexer Mengen konstruiert. Die Beschrankung auf unei-
gentliche Mengen ist dabei unwesentlich.

Sei L, ={(%,...,%)/0 <%, <qx=0¢=2,...,n¢g=1,2,... Dann ist
r(L)=4d(L)=W/(L,)=0,v=0,1,...,n—2, aber G(L)) = ¢, und mit ¢ — oo
folgt, dass es keine Ungleichungen vom Typ G < ¢(7), G < ¢(d), G < (W),
v=0,1,...,n— 2gibt.

Sei Q, ={(%,..., %)% =1/2,0 <x,<gi=2,...,n}q€ [0, 00). Dann ist D(Q,)
=2 R(Q,)=Vn — 1 g und (siehe [4],S. 216 (55)) W,(Q,) = ¢, ¢"~* mit gewissenc, > 0
firy=1,...,n— 1.

Mit ¢ durchlaufen also auch R(Q ), D(Q,), W,(Q,),»=1,...,n — 1 alle Werte
von 0 bis co. Wegen G(Q,) = 0 fiir jedes ¢ folgt damit notwendig: y(f) < 0 fiir
0 < f < o0; d.h. esgibt nur triviale Ungleichungen¢(R) < G,y(D) < G,»(W,) < G,
yv=1,...,n—1.
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Der analoge Schluss fiir W=V folgt mit T = {(x;,..., #,)/0 <x, <1,
0 <x; <gq1=2,...,n} Damit ist a) bewiesen.

b) In Satz 2 werden 3 der 5 Ungleichungen angegeben. Eine Ungleichung fiir 4
erhdlt man aus der fiir r wegen 27 < d < 2)/n + 1 r (nach dem Satz von Steinhagen,
siehe z.B. [1], S. 79). Eine Ungleichung fiir W,_, erhilt man aus der fiir D wegen
a,—y/n D < W, < a,/2 D (sieche z.B. [4], S. 212 (44) und S. 219 (65) mita = 0 und
h = D). Damit ist b) bewiesen.

Lemma 1. Sei K € & Dann ist V (K_yz2) < G(K) < V(Kyw)2)-
Beweis. Ist G(K) =0, so ist 7(K) < }n/2 und K-y72 uneigentlich oder leer, also
V(K—ym2) = 0. Weiter ist V(Kyuj2) > 0, also die Behauptung bewiesen. Sei also
G(K) > 0. Jedem Gitterpunkt g, € K werde ein achsenparalleler abgeschlossener
Wiirfel Q; der Kantenldnge 1 und mit g, als Mittelpunkt zugeordnet. Es gibt G solcher
G

Q;- Sei Q = L=J1 Qs-

Fiir jedes x € Q; gilt | x — g, | < J/n/2. Alsogilt K_yzj2 C Q C Ky/»j2 und damit
V(K—yni2) < V(Q) < V(Kyns). Mit V(Q) = G folgt die Behauptung.

Lemma 2. Fiir g € (—oo, 00) gilt V(K,) = V(K) + ¢ F(K).
Beweis. Wegen der Stetigkeit von 7 und F kann angenommen werden: K ist ein

Polytop. Weiter seien F, die (» — 1)-dimensionalen Seitenflichen von K und f, deren
(n — 1)-dimensionales Volumen. Also F(K) =2 fie

Der Beweis jetzt in 3 Teilen:
a) o = 0. Zu einem F; sei Z; der Zylinder der Héhe g iiber der Grundfliche F,
von K nach aussen. Weitersei Z = | J Z; Dannist V(Z) = ¢ F(K). Wegen K,OKuZ
i

folgt V(K ,) = V(K) + V(Z) = V(K) + ¢ F(K).
b) —7 < ¢ < 0. Die Z; mit der Hohe |p | seien wie in a) erklirt, nur diesmal
seien sie ins Innere von K aufgetragen. Wieder sei Z = U Z,. Dann gilt V(Z) <

| o | F(K), dasich die Z; wegen der Konvexitit von K teilweise iiberdecken. Anderer-
seits folgt aus der Definition von K: K, = K \ Z, also wegen ¢ < 0: V(K ) = V(K)
—le| F(K) = V(K) + ¢ F(K).

c) ¢ < — 7. Wie in b). Hier ist K, = ¢, also V(K ,) = 0. Weiter ist K C Z, also
V(K) <V(Z) < |o| F(K),d.h. 0 > V(K) + ¢ F(K).

Beweis von Satz 2. Ist # > 0, dann gilt fiir die dussere Parallelmenge V(K ) <
(1 + ¢/r)* V(K) und fiir die innere: V(K-,) = (1 — ofr)" V(K) (siehe z.B. [5], S. 66),
wenn nur ¢ < 7 ist. Mit ¢ = |/»/2 und Lemma 1 folgen die Ungleichungen (3).

Ist S, eine Inkugel, Sp die Umkugel von K, so gilt: Kyznje C Sg4yne also
V(Kywiz) < «, (R+Vn/2)" und fiir > Ynf2 S,—yaz C K_yape, alsoa, (r — Yn/2)" <
V(K_y=72). Mit Lemma 1 folgen daraus die Ungleichungen (2). Zum Beweis der rechten
Seite von (1) beachte man, dass fiir je zwei Gitterpunkte g, g; € Kgilt: | g; — g; | < D.
Also ist das Q aus Lemma 1 enthalten in einem achsenparallelen abgeschlossenen
Wiirfel der Kantenlinge D + 1, und es ist G < (D + 1)

Zum Beweis der linken Seite von (1) wird ein ganz anderer Gedanke herange-
zogen: Sei K € 8" und G(K) = An + u mit ganzen Zahlen 2 > 0 und 0 < u <.
Ist u = 0, so kann K durch (hochstens) 4 verschiedene Hyperebenen H,, die jeweils
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(mindestens) # der Gitterpunkte aus K enthalten, sukzessive in A+ 1 (nichtabge-
schlossene) konvexe Mengen K; mit G(K,) =0,4=1,...,4+ 1 zerlegt werden. Ist
u > 0, so wird 7.a. eine weitere Hyperebene benétigt, und man erhilt 4 + 2 ver-

schiedene K;. Wir fassen beide Fille zusammen, indem gegebenenfalls K, 1, = ¢ sei.
A+

Wir haben: G(K,) =0 fiir 2 =1, .., 4 4+ 2. Weiter gilt: ZV(K,-) = V(K) und F(Kj)
1=1

< F(K)firi=1,...,A+ 2. Wegen G(K,) = 0 folgt mit dem Satz von Hadwiger:

V(K,) < (1/2) F(K

Also

A+2
K)<12F A2

oder
2n (K——l) < G.
F

Beweis des Zusatzes: Sei S, eine Kugel mit Radius ¢ > 0 um einen Gitterpunkt.
Dann folgt die Notwendigkeit der Bedingungen mit ¢ — 0. Die Hinldnglichkeit fiir
n = 2 folgt wegen 2ya R >n R > F[2 bzw. 2V |jar > V|t = F[2und V[n 2 > 1
aus G < V + F/2+ 1 von Nosarzewska.

Beweis von Satz 3 a). Hinldnglichkeit: Sei K € &. Dann folgt die linke Seite von

(4) aus Lemma 1 und Lemma 2 mit ¢ = — }/n/2. n
Fiir die dussere Parallelmenge K|, gilt nach Steiner: V(K,) = 2 () W, 0" Mito=Vn/2
und Lemma 1 folgt die rechte Seite von (4). v=0

Da (4) richtig bleibt, wenn die b, verkleinert bzw. die ¢, vergrossert werden, ist die
Hinldnglichkeit bewiesen.

b) Notwendigkeit: Wie im Beweis von Satz 1 werden passende konvexe Mengen
konstruiert. Sei j € [0, #] und PV = {(x;,...,%,)/0 < x; <qfiri=1,...,7, x,=0
firi=7+1,...,n}

Nach [4], S. 216 (55) ist W, (P%) = (*}1)/(**1) &, ¢"~".

Fir y < —jist also W, (PY) = 0.

Firy=n—jist () W, (PY) =a,-;¢.

Fir v > n — 7 ist W, (P9) =0 (¢/-1).

Wegen G(PY)) = ¢/ folgt mit ¢ — oo: ¢; > «7". Wegen j € [0, ] beliebig folgt die Be-
hauptung fiir die rechte Seite von (4).

Sei j €[0,#] und ng)={(x1,...,xn)/0 < x; <qfﬁrz'= 1,. ..,7', x; = 1/2 fir
t=7+1,...,n} Dannist W, (Q¥) = W, (P?) fur =0, 1,.

Firj=0,1,...,n— 1ist G(Q(q’)) O also folgt mit ¢ —> co0: b,—; < Ofury-—O 1,.
n—1,dh b, <Ofirv=1,...

Fiir j = n ist V(QM) = G(QY) = q" und W, (Q) = a, g"%, v =1,..

Mit ¢ — oo folgt daraus b, < 1.

Sei T, ={(%, ..., %)/0 <%, <1,0<x%<¢i=2,...,n}
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Dannist V(T ) = ¢" " F(1;) =2¢"~1+ 2 (n — 1) g2

und W, (T,)) =0 (¢~ %) firv=2,...,n.

Wegen G(T ) = 0 folgt daraus mit ¢ - 00: 28, + b, <0

und mit b, < 1 folgt daraus b, < — 1/2. Damit ist Satz 3 bewiesen.

J. M. Wills, TU Berlin
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Ein isoperimetrisches Problem mit Nebenbedingung

Als Variante des klassischen isoperimetrischen Problems bestimmt Besicovitch
in [1] u.a. solche konvexen Bereiche des euklidischen R?, welche in einem gegebenen
kompakten konvexen Bereich K enthalten sind und bei vorgegebenem Umfang F
maximalen Flicheninhalt V liefern. Es zeigt sich, dass dabei die inneren g-Hiillen
K¢, g € [0, 7], r = Inkugelradius von K, d.s. die abgeschlossenen Hiillen der Vereini-
gungen aller in K enthaltenen Kugeln vom Radius g, eine ausgezeichnete Rolle spielen.

Wir interessieren uns in dieser Note fiir folgendes verwandte Problem im R,
n > 2:

Ist P ein konvexes Tangentialpolyeder an seine Inkugel S,, » > 0, also V(P)/F(P) =
V(S,)|F(S,) = r/n, so suchen wir das (nach dem Auswahlprinzip sicher existierende)
max V(I')/F(I')| I" konvex, S, C I' C P und die zugehdrigen Extremalkérper.

Im R?lautet das Ergebnis

V) _ V(P _ V(P = a VP)]
FI) = Fpw) [V(P) — z 7]
und Gleichheit gilt nur fiir I' = P,

(1)
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