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42 Kleine Mitteilungen

Kleine Mitteilungen
Uber das Verhalten der GauBschen Kriimmung bei Affinitit

Es sei 2 ein C2-Hyperflachenstiick im R” mit nicht verschwindender Kriimmung.
Wir nehmen fiir den Moment an, dass keine Tangentialebene von 2 den Ursprung
enthdlt. Es sei K die GauBlsche Kriimmung, p der Stiitzabstand (Abstand der Tan-
gentialebene 7, des Punktes x € 2'vom Ursprung O), d2' das Flichenelement von X
und dw das der Einheitskugel. Ferner sei 2* die polar-reziproke Fliache fiir die
Reziprozitit beziiglich der Einheitskugel mit dem Mittelpunkt O. Unter unseren
Voraussetzungen besteht eine Punkt-Transformation 2' — 2*. Das Volumenelement,
aufgespannt durch die Pyramide mit der Spitze O und dem Flichenelement dX als
Basis, ist

1
AV =—pdX.
n pax
Das entsprechende Volumenelement fiir 2* ist
1 1
AV* = — p~"dw = — Kp—rdl.
n P o n P

Da X und X* kontragrediente Flichen sind, ist das Verhiltnis dV*: dV = Kp—r—1
eitne unimodular linearc Invariante.

In einer nicht singuldren linearen Transformation A erhalten wir aus 2’ die
Fliche 2. Alle Grossen beziiglich 2 sollen mit ’ bezeichnet werden. Die (n — 1)-
Flicheninhalte in den Hyperebenen parallel 7, sollen in der Transformation 4 mit
dem Faktor A(x) multipliziert werden. Die Betrachtung einer Pyramide mit der
Spitze O und Basis in 7, zeigt, dass in einer nicht singuldren Transformation 4,

|det A | p = 9" A(x) .
Aus Dimensionsgriinden wird
K p'-n-1=|detd |"2 Kp—"-1.
Dabher:
_ |det4 |-t
o Az)n+1
Da eine Translation die Kriimmung nicht dndert, gilt die Formel fiir jede nicht singu-
lire Affinitdt. Dadurch wird auch die Bedingung, dass keine Tangentialebene durch
den Ursprung gehen darf, nachtriglich wieder eleminiert.
Fiir » = 2 stammt die Formel von E. Trost [1]. Fiir » = 3 und projektive Abbil-

dungen stammt die Formel im wesentlichen von A. Voss [2].
H. Guggenheimer, Polytechnic Institute of Brooklyn*)

KI

LITERATURVERZEICHNIS

[1] E. Trost, Uber das Verhalten des Kriimmungsvadius bei Affinitdt, E1. Math. 3, 81-82 (1948).
[2] A. Voss, Math. Ann. 39, 179 (1891).

*) Research partially supported by NSF Grant GP-27960



Kleine Mitteilungen 43

Eine verschirfte Ungleichung zwischen Volumen,
Oberfliche und Inkugelradius im R"

Sei K ein eigentlich konvexer Koérper des R* (n > 2), V = V(K) sein Volumen,
F = F(K) seine Oberfliche, » = 7(K) sein Inkugelradius und V, = V,(K) = »," sein
Inkugelvolumen. Dann gilt

Satz: vF >V + (n — 1) V,, und fiir » > 3 gilt Gleichheit nur fiir die Kugel.

Bemerkungen: Fir n = 2 wurde der Satz von Bonnesen in [1] gezeigt, einen
kurzen Beweis gibt auch Hadwiger in [2]. Fiir » > 2 wurde er von Wills (vgl. [6],
[7]) vermutet. In [4] diskutiert Herz den Zusammenhang mit dhnlichen Ungleichungen
und zeigt obigen Satz, falls V(K) < (# 4 1) V,(nK)/n. In dieser Arbeit wird mit einer
fiir eine Verschirfung der isoperimetrischen Ungleichung bereitgestellten, relativ
komplizierten Abschidtzung von Hadwiger [3] gezeigt, dass der Satz uneingeschrankt
gilt.

In [5] wird von Fejes Toth gezeigt, dass der Satz fiir n = 2 auch fiir nicht kon-
vexe Korper (einfach zusammenhédngende Polygone) richtig bleibt. Diese Erweiterung
ist fiir » > 3 nicht richtig:

Sei S={x/|x| <7}. Zu k Punkten a,, ..., a, einer Folge (a;; +=1,2,..)
von auf der Kugeloberfliche {%/ | x | =7} dicht liegenden Punkten wihle man
e = g(k) > 0so, dass die Mengen M, = {x/ | x — Aa; | < e, 0 < A < 1} disjunkt sind.

k
Der Inkugelradius » von M = S\ U M, strebt fiir & — oo gegen 0. Man kann nun
1=1

¢(R) zusitzlich so wihlen, dass F(M) — F(S) und V(M) — V(S) fiir & — oo gilt. Also
ist schon fiir ein endliches % die im Satz stehende Ungleichung nicht erfiillt.

Beweis: Sei n > 3. Es gilt nach [3] S. 270, (c)

V < (’I’I«” xn)—ll(n—]) (Fn/(n—l) . (Fl/(n*l) . (n %n)ll(n—l) 7’)")

oder mit
=1 — F
nx,
V < (e — (e — 7))
und daher

tF—V —n—1ur =, r(n—1) (c* =) 4 rci—1—c"+ (c — 7))

=x,(c—7)(r(n—1) ff””l"’ A S (R Wk B LA
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Die letzte Abschitzung folgt, da wegen F > n x,*~! ¢ > r gilt. Hierbei gilt
Gleichheit nur fiir die Kugel. J. Bokowski, TU Berlin
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Aufgaben
Aufgabe 665. Fiir nichtnegative ganze Zahlen n beweise man die Formel
r (-1 1 n—i 1
2 i__)_ 2’ =1
sm0 12! k=0 k!

I. Paasche, Miinchen

1. Losung (mit Verallgemeinerung): G: = Menge der komplexen Zahlen, N: =
{0,1,2,3,...},

L (__1:‘ n—1 2k
s,,(z):=‘_§—~“ z‘lﬁ\:;%-!—.

Durch die Substitution j: = ¢ + %k kann diese Doppelsumme iiber die Gitterpunkte
(¢, ) mit 0 < 74 k < n auch als

1 rod d i
S = 5d S L o ()
( 2 Z( )¢!(7—z)! §7§( "\
geschrieben werden.

Wegen
1' # e -

7\ _JOfirg +0
,._2;('—” (i)—{lfﬁrj-_—o

gilt fiir alle ze C, » € N: S,(z) = 1. z = 1 ist der zu beweisende Spezialfall.
G. Bach, Braunschweig, BRD

Second solution (with generalization): If

i”‘ak

Sa(@) = 2(-— )f”Zk,

$1=0
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