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Uber die Wechselwirkung zwischen Mathematik und Physik

Abschiedsrede, gehalten am 12. Juli 1972 als Abschluss einer Vorlesung iiber Gruppen-
theorie und Quantenmechanik

Im Laufe dieser Vorlesung hat sich immer wieder gezeigt, wie wichtig die Mathe-
matik fiir die theoretische Physik ist. Das gilt sowohl fiir die klassische Physik als
auch fiir die Quantenmechanik. Zum Beispiel: Ohne den Satz von John von Neu-
mann iiber die Spektralzerlegung der selbstadjungierten linearen Operatoren wire
die ganze Quantenmechanik nicht einmal exakt logisch formulierbar!

Also: Die Physiker brauchen die Mathematiker. Das ist iibrigens allgemein
bekannt.

Ich mochte Thnen nun an Beispielen zeigen, dass auch die Mathematik fiir ihr
Blithen und Gedeihen die Physik braucht. Ganze Zweige der klassischen und auch der
modernen Mathematik sind nur durch Anregungen aus der Physik und Astronomie
entstanden.
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Die vier Wissenschaften der Pythagoreer

Das Wort Mathematik ist abgeleitet von Ta Mathemata, «die Lerngegenstdndey,
die exakten Wissenschaften. Die Pythagoreer hatten ein System von vier Wissen-
schaften:

Arithmetik, Geometrie, Harmonik, Astronomie.

Diese vier gehorten zusammen. Teile der Arithmetik wurden hauptsidchlich
wegen der Anwendung auf die Harmonik entwickelt. Gewisse Lehrsidtze der Geometrie
wurden speziell wegen der Anwendung auf die Astronomie in die «Elemente» auf-
genommen, so die Konstruktion des reguldren 15-Ecks in einem Kreis. Der Gross-
kreisbogen vom Pol der Ekliptik zum Pol des Aquators war namlich nach damaligen
Messungen 24°, d. h., er war gleich dem Bogen, der von einer Seite des reguliren
15-Ecks unterspannt wird. Also war die Konstruktion des 15-Ecks fiir die Astronomie
niitzlich, und aus eben diesem Grund wurde diese Konstruktion in die «Elemente»
aufgenommen, wie Proklos uns in seinem Kommentar mitteilt.

In seinem Kommentar zu der Konstruktion fiir das Fallen eines Lotes (Euklid,
Elemente I 23) teilt Proklos mit, dass Oinopides von Chios der erste war, der diese
Aufgabe behandelte, weil er sie fiir die Astronomie niitzlich fand. Die Geometrie hat
also schon im 5. Jahrhundert wichtige Anregungen von der Astronomie erhalten,
ebenso wie die Arithmetik von der Harmonik angeregt wurde. Nach der Lehre der
Pythagoreer entsprechen den symphonen Intervallen der Musik bestimmte Zahlen-
verhiltnisse. Der Oktave entspricht das Verhiltnis 2:1, der Quinte 3:2, der Quarte
4:3. Daher brauchten die Pythagoreer zur Begriindung ihrer Harmonik gewisse Sitze
aus der Arithmetik der Zahlenverhiltnisse.

Wenn diese Zusammenhinge im Bewusstsein der Pythagoreer nicht vorhanden
gewesen wiren, so wire das System der 4 Mathemata jedenfalls nicht in der vor-
liegenden Form entstanden.

Die « Methode» des Archimedes

Als Archimedes noch kein alter Grieche, sondern ein junger Grieche war, fand
er drei berithmte Sitze:

1. Der Inhalt eines Parabelsegmentes ist %/, vom Inhalt des umbeschriebenen
Dreiecks.

2. Der Inhalt einer Kugel ist 2/ vom Inhalt des umbeschriebenen Zylinders.

3. Die Oberfliche einer Kugel ist gleich 4mal Oberfliche des Aquatorkreises.

Figur 1 Figur 3
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Archimedes war auf die Entdeckungen so stolz, dass er den Wunsch geidussert
hat, die Kugel mit dem umbeschriebenen Zylinder in seinen Grabstein einmeisseln zu
lassen. Nachdem ein romischer Soldat ihn erschlagen hatte, hat der rémische Feldherr
Marcellus den Wunsch seines grossen Gegners Archimedes erfiillt. Cicero hat, als er
auf Sizilien Quéstor war, das Grabmal mit Kugel und Zylinder noch gesehen.

Wie hat Archimedes die drei Sitze gefunden? Dariiber berichtet er in einem
offenen Brief an Eratosthenes, der in den Werken des Archimedes unter dem Titel
«Die Methode» zu finden ist.

Archimedes denkt sich das Parabelsegment etwa aus einer diinnen Metallplatte
ausgeschnitten und hingt es als Ganzes am Ende eines Hebelarmes auf. Seine Uber-
legung gilt auch fiir schiefe Parabelsegmente, aber der Einfachheit halber will ich
jetzt ein gerades Parabelsegment annehmen. Der Hebelarm wird gleich der Sehne des
Segmentes gemacht.

‘__.__,_-g_._
\

Figur 4

Nun zieht Archimedes eine Tangente in einem Eckpunkt des Parabelsegmentes
und konstruiert ein rechtwinkliges Dreieck (in der Figur gestrichelt). Dieses Dreieck
schneidet er aus seiner Metallplatte aus und hidngt es am anderen Hebelarm aulf,
nicht am Ende, sondern am Hebelarm selbst, mit der Spitze nach aussen.

Nun wird behauptet, dass das Parabelsegment mit dem Dreieck Gleichgewicht
macht. Um das plausibel zu machen, zerlegt Archimedes das Parabelsegment in so
diinne Streifen, dass jeder Streifen als eine Strecke betrachtet werden kann. Ebenso
zerlegt er auch das Dreieck in diinne Vertikalstreifen, die als Strecken betrachtet
werden. Jede dieser Strecken macht Gleichgewicht mit einer Strecke in der Parabel;
das folgt sehr leicht aus der Gleichung der Parabel, die Archimedes kannte, und aus
dem Hebelgesetz, das er selbst bewiesen hat. Also, so schliesst er, muss das ganze
Parabelstiick, das ja aus allen den Strecken zusammengesetzt ist, Gleichgewicht
machen mit dem ganzen Dreieck.

Anderseits kann man das Dreieck auch in seinem Schwerpunkt aufhidngen; fiir
die Wirkung auf den Hebel macht das nichts aus. Da nun der Hebelarm, an dem
das Parabelsegment hingt, dreimal so lang ist wie der andere Hebelarm bis zum
Schwerpunkt, muss das Gewicht des Dreiecks dreimal so gross sein wie das Gewicht
des Parabelsegmentes, das heisst, die Fliche des Segmentes ist ein Drittel der Drei-
ecksfliche oder zwei Drittel der Fliche des umbeschriebenen Dreiecks der Parabel.

Ein Beweis ist das natiirlich nicht, das wusste Archimedes sehr wohl; denn eine
Fliche ist nicht eine Summe von Strecken. Aber durch diese Uberlegung gewann
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Archimedes doch die Uberzeugung, dass sein Ergebnis richtig war. Und das ist sehr
viel wert, «denn wenn man einmal eine gewisse Kenntnis des Gesuchten hat», so
schreibt er selbst, «ist es viel leichter, den Beweis zu fiihren, als wenn man nichts
davon weiss.»

Als nichstes stellte Archimedes sich das Problem, den Inhalt der Kugel mit
derselben Methode zu finden. Er dachte sich also die Vollkugel am Ende eines Hebel-
arms aufgehidngt. Der Durchmesser der Kugel sei a; die Linge des Hebelarms wihlte
er ebenfalls gleich . Am selben Hebelarm hing er einen geraden Kreiskegel auf, mit
Hoéhe a und Radius des Grundkreises ebenfalls gleich a.

[

Figur 5

Am anderen Hebelarm hing er einen Zylinder auf, dessen Héhe und Grundkreis-
radius wieder gleich a sind.

Nun denkt Archimedes sich die Kugel, den Kegel und den Zylinder aus diinnen
Kreisscheiben zusammengesetzt. Behauptet wird, dass jede Kreisscheibe im Zylinder
im Abstand ¥ vom Aufhingepunkt mit den beiden Kreisscheiben in der Kugel und
im Kegel im gleichen Abstand x vom obersten Punkt der Kugel bzw. von der Kegel-
spitze Gleichgewicht macht.

Zeichnen wir die drei Kreise einmal heraus:

\

Figur 6
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Wir haben zu zeigen, dass die Summe der beiden kleineren Kreisflichen sich
zur grosseren Kreisfliche verhilt wie der Hebelarm x zum Hebelarm a. Archimedes
wusste ~ Eudoxos hatte es schon bewiesen —, dass Kreisflichen proportional sind zu
den Quadraten ihrer Radien. Es ist also nur zu beweisen:

P+ x%):a’=x%x:a
Nun ist bekanntlich in der Kugel
2 =% (a — x)
also
4+ at=ax
und
ax:a®=x:a

womit die Behauptung bewiesen ist.

Da also die einzelnen Kreisscheiben Gleichgewicht machen, so ist es plausibel,
dass auch die ganze Kugel und der ganze Kegel mit dem Zylinder Gleichgewicht
machen. Nun kann man aber das ganze Gewicht des Zylinders in seinem Schwerpunkt
konzentriert denken. Dann verhalten sich die Hebelarme wie 2 zu 1, also miissen sich
die Gewichte wie 1 zu 2 verhalten:

Kugel + Kegel = 1/, Zylinder.

Nun ist der Kegel nach Eudoxos gleich einem Drittel seines umbeschriebenen
Zylinders, also hat man

Kugel + 1/; Zylinder = 1/, Zylinder
oder
Kugel = 1/, Zylinder.

Der Zylinder am rechten Hebelarm ist gleich 4 mal dem umbeschriebenen Zylinder
der Kugel, also ist die Kugel dem Inhalte nach gleich %/4 dieses Zylinders, was zu
zeigen war.

Wenn Archimedes sich nicht vorher mit dem Hebelgesetz befasst hitte, wire die
Idee zu dieser Herleitung ihm nie gekommen.

Newton und die Differentialrechnung

Wir springen nun ins 17. Jahrhundert. Newton hat die Differentialrechnung ent-
deckt, weil er sie brauchte fiir seine Planetentheorie. Er wollte beweisen: Wenn ein
Planet sich auf einer Ellipse nach den Keplerschen Gesetzen bewegt, dann ist der
Beschleunigungsvektor zur Sonne gerichtet und umgekehrt proportional zum Quadrat
des Abstandes. Dabei musste er die Geschwindigkeit als Vektor betrachten und diesen
Vektor nach der Zeit differenzieren. Er war also genétigt, die Vektorrechnung und
die Differentialrechnung zu erfinden!
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Nachdem Newton das Ergebnis gefunden hatte, gab er nachher einen untadeligen
Beweis im Stil der griechischen Geometrie, ohne Differentialrechnung, mit Epsilon
und Delta.

Nun werden Sie vielleicht sagen: Ja, aber die Differentialrechnung wire auch
obne Newton entdeckt worden. Leibniz ging, von Pascal angeregt, von ganz anderen
Uberlegungen aus, und die Briider Jakob und Johann Bernoulli haben auf den Ideen
von Leibniz das ganze Gebdude der Differential- und Integralrechnung aufgebaut.

Das ist gewiss richtig, aber auch die Variationsrechnung ging von einem Problem
der Physik aus, nimlich vom Problem der Kurve kiirzester Fallzeit zwischen zwei
Punkten. Und weiter:

—  die Betrachtung der Schwingungen einer eingespannten Saite fiihrte zur Fourier-
Rethe und zur Eigenwerttheorie der Differentialoperatoren,

—  die Untersuchungen von Fourier tiber die Warmeleitung fithrten ihn zum Fourier-
Integral,

-~ viele von Eulers fruchtbaren Gedanken entsprangen der Beschiftigung mit der
Mechanik der Continua,

~  die Sdkulargleichung stammt aus der Astronomie, ndmlich aus der Theorie der
sikuldren Storungen,

— die ganze Potentialtheorie ist aus der Physik erwachsen,
—  ebenso die Ergodentheorie.

Riemann und die Abelschen Integrale

Nun will ich Ihnen eine Geschichte erzdhlen iiber Riemanns Theorie der alge-
braischen Funktionen und ihrer Integrale. Eine schone Geschichte; sie steht bei Felix
Klein in seinen berithmten «Vorlesungen iiber die Geschichte der Mathematik im
19. Jahrhundert».

Es sei z eine komplexe Variable und w eine algebraische Funktion von z, definiert
durch eine algebraische Gleichung

flz,w)=0.

Die Funktion w ist eindeutig auf einer Riemannschen Fliche, die mehrblittrig
iiber die z-Ebene ausgebreitet ist. Nun wollte Riemann die von ihm so genannten
«Abelschen Integralen» konstruieren, also Integrale [« dz, wobei « eine rationale
Funktion von z und w sein soll.

Riemann unterscheidet 3 Gattungen von Abelschen Integralen:

1. Gattung: Das Differential # dz hat, ausgedriickt durch die jeweilige Orts-
uniformisierende, keine Pole.

2. Gattung: Das Differential hat nur Pole von zweiter und héherer Ordnung
ohne Residuum; das Integral hat also nur Pole 1. und héherer Ordnung.

3. Gattung: « dz hat nur Pole 1. Ordnung, das Integral also nur logarithmische
Singularitéten.

Fangen wir, immer nach Klein, mit den Integralen 3. Gattung an. Riemann stellte
sich eine Riemannsche Fliche im Raum aus diinnem Blech vor. Er legt an 2 Punkten
Elektroden an und legt eine Spannung an.
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Figur 7

Dann wird ein stationdrer Strom von -+ zu — fliessen. Das Potential U ist iiberall
eindeutig, verhilt sich in der Nihe der Pole wie der Realteil von - ¢ logz und erfiillt
sonst iiberall die Potentialgleichung

AU =0.

Dazu gibt es dann eine mehrdeutige Funktion V, so dass U + ¢V eine analytische
Funktion auf der Riemannschen Fliche ist. Diese Funktion U + ¢V ist das gesuchte
Integral.

In analoger Weise kann man auch die Integrale erster und zweiter Gattung
konstruieren.

Diese Geschichte wurde noch zu meiner Zeit in Gottingen erzdhlt, und sie hat
einen tiefen Eindruck auf mich gemacht.

Nun habe ich — wie es sich fiir einen Historiker ziemt — einmal bei Riemann
nachgeschaut. Da steht aber kein Wort von einem elektrischen Strom, auch nicht
von einem Warmestrom oder Flissigkeitsstrom, sondern Riemann leitet die Existenz
der Integrale erster, zweiter und dritter Gattung aus einem Prinzip her, das Riemann
selbst zuerst aufgestellt und aus Verehrung fiir seinen Lehrer «Dirichletsches Prinzip»
genannt hat.

Ja, wie nun? Hat Klein die Geschichte erfunden oder hat Riemann sie ihm viel-
leicht miindlich erzdhlt?

In seinem Buch sagt Klein, dass er in einer Abhandlung in den Math. Annalen
«Uber die Riemannsche Theorie der Abelschen Integrale» die Sache ausfiihrlicher
dargestellt hat. Also habe ich dort nachgeschaut. Was steht dort? Zunédchst: Klein
hat Riemann nie gesehen und hat auch keine Nachricht tiber die Art, wie Riemann
die Abelschen Integrale zuerst konstruiert hat. Was wirklich geschah, war:

Prym, ein Schiiler von Riemann, hat Felix Klein erzdhlt, dass Riemann nicht
nur solche Riemannsche Flidchen betrachtet hat, die iiber der z-Ebene ausgebreitet
waren, sondern dass er auch allgemeinere Fldchen, z. B. Flichen im Raum, betrach-
tete. Auch auf einer solchen Fliche kann man analytische Funktionen betrachten,
die konforme Abbildungen vermitteln.

Weiter wusste Klein, dass Riemann sich auch mit der Physik befasste. Und nun
ging Klein ein Licht auf: So, mit Strémungsfeldern, muss Riemann sich die Sache
iberlegt haben!

Die ganze schone Geschichte ist also ein modernes Médrchen. Aber etwas Wahres
ist doch daran, niamlich erstens: dass Riemann die Potentialtheorie, die aus der
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Physik stammt, zur Losung eines funktionentheoretischen Problems benutzt hat,
und zweitens: dass Felix Klein sich eine sehr schéne Methode iiberlegt hat, wie man
durch Betrachtung von Potentialstromungen die Theorie der Abelschen Integrale
plausibel und anschaulich herleiten kann. Er hat diese Herleitung vorgetragen in
Vorlesungen, die sehr anregend auf die Horer gewirkt haben.

Die Quantenmechanik

Auch in unserem Jahrhundert haben Mathematik, Physik und Astronomie sich
gegenseitig befruchtet bis zum heutigen Tag.

Ich beschrinke mich heute auf die Physik und lasse die Arbeiten von Siegel
und Stiefel zur Himmelsmechanik ganz beiseite.

Die Begriinder der Quantenmechanik haben als selbstverstindlich — oder min-
destens sehr plausibel — angenommen, dass jeder selbstadjungierte Operator im Raum
der Wellenfunktionen ein Spektrum, also ein vollstindiges System von Eigenfunk-
tionen mit reellen Eigenwerten hat. Bewiesen war das zur Zeit von Born nur fiir
beschrinkte Operatoren, und zwar durch die Arbeiten von Hilbert und Hellinger. Fiir
unbeschriankte Operatoren wusste man noch nicht einmal, wie der Begriff selbst-
adjungiert zu definieren ist. Trotzdem beruhte die ganze Quantenmechanik auf der
Annahme, dass man alle Funktionen nach Eigenfunktionen entwickeln kann; das
gilt sowohl fiir die Matrixmechanik von Heisenberg, Born und Jordan als auch fiir die
Wellenmechanik von Schroedinger.

Derjenige, der die Sache logisch in Ordnung gebracht hat, war John von Neu-
mann. Er betrachtete zuerst maximale symmetrische Operatoren im Hilbertraum. Dann
aber sah er, dass er eine noch schirfere Bedingung stellen musste. Er nannte die
Operatoren, die diese schirfere Bedingung erfiillen, Aypermaximal. Heute nennt man
sie einfach selbstadjungiert.

Es ist von Neumann gelungen, zu beweisen, dass jeder hypermaximale Operator
eine Spektralzerlegung hat. Dieser Satz bildet die Grundlage der heutigen Theorie der
linearen Operatoren im Hilbertraum. So verdankt ein wichtiger Zweig der heutigen
Funktionalanalyse seine Entstehung einer Anregung aus der Physik.

Eine neue, einfachere Begriindung der Spektralzerlegung gab Sfone. Man findet
sie in seinem schonen Buch: Linear Transformations in Hilbert Space and their
Applications.

Eingliedrige Halbgruppen

Derselbe Stone bewies im Jahre 1932 einen wichtigen Satz iiber eingliedrige
Gruppen von unitdren Transformationen im Hilbertraum. Der Satz wurde 1948 von
Hille und Yorsida unter schwicheren Bedingungen bewiesen. Als Spezialfall ergibt
sich: Wenn die unitdren Transformationen U(#) fiir reelle { = O stetig von ¢ abhidngen
und die Bedingungen

U(s) U(t) = U (s + ¢)

U@0)=1
erfiillen, dann gibt es einen selbstadjungierten Operator H so, dass
U(t) = exp(—1HY)



B. L. van der Waerden: Uber die Wechselwirkung zwischen Mathematik und Physik 41

gilt. Auch zu diesem Satz ist die Anregung aus der Physik gekommen, von der zeit-
abhdngigen Schroedinger-Gleichung her. Aus dem Satz folgt, wie ich im Laufe dieser
Vorlesung gezeigt habe, dass es in jeder Quantenfeldtheorie, in der ein Kausalitits-
prinzip gilt, auch einen Hamilton-Operator H geben muss.

Aus diesem Beispiel sehen Sie, dass bis in die heutige Zeit die Entwicklung der
Mathematik durch Anregungen aus der Physik kraftig gefordert wurde.

Darstellungen von Gruppen durch lineare Transformationen

Wie erhdlt man alle stetigen Darstellungen einer Lie-Gruppe G durch lineare
Transformationen ? Beschrankt man sich auf lineare Transformationen von endlich-
dimensionalen Vektorrdumen, so wurde die Frage durch die Untersuchungen von Eli
Cartan und Hermann Weyl so vollstindig beantwortet, wie man es nur wiinschen kann.
Spdtere Untersuchungen von John von Neumann und anderen brachten einige Er-
ganzungen, aber im wesentlichen war die Theorie um 1930 abgeschlossen.

Da fand der Physiker Wigner, dass fiir die Physik nicht nur die endlich-dimen-
sionalen Darstellungen wichtig sind, sondern auch die Darstellungen im Hilbertraum.
Bei kompakten Lie-Gruppen kommt im Hilbertraum nichts wesentlich Neues hinzu,
aber bei nicht-kompakten Gruppen wie der Lorentz-Gruppe gibt es noch viel mehr
Moglichkeiten. Wigner selbst gab die ersten Beispiele und bewies einige Sitze. Aus
der Fragestellung von Wigner hat sich heute eine ganze rein mathematische Theorie
entwickelt, die fiir die Quantenfeldtheorie von grosser Bedeutung ist.

Die Storungstheorie der Spektralzerlegung

Schroedinger, der Begriinder der Wellenmechanik, brauchte eine Methode, kom-
plizierte quantenmechanische Systeme, z. B. Atome mit mehreren Elektronen, ndhe-
rungsweise zu behandeln. Er erfand die Storungstheorie. Kurz vorher hatte auch Born
im Rahmen der Matrixmechanik eine Methode entwickelt, die der Stoérungstheorie
von Schroedinger dquivalent war.

Diese Stérungstheorie war aber mathematisch nicht einwandfrei. Rellich war der
erste, der sich das Problem stellte, die Storungstheorie exakt mathematisch zu be-
griinden.

Aus dieser Problemstellung ist unter den Hénden von Rellich, Friedrichs, Kato,
Wightman und anderen eine ganze mathematische Theorie entstanden. Kafo hat unter
anderem bewiesen, dass der Hamilton-Operator eines Atoms oder Molekiils tatsdchlich
selbstadjungiert ist. Dieses Ergebnis ist fiir die Quantenmechanik der Atome und
Molekiile von grundlegender Bedeutung.

Uber den neuesten Stand der Stérungstheorie hat Kato am Mathematikerkon-
gress in Nice 1970 einen dusserst interessanten Vortrag gehalten.

Schlussbetrachtung

Jeder Zweig der Mathematik kann als Jogisches System fiir sich allein bestehen.
Wenn man aber die Mathematik als lebendige, wachsende Wissenschaft betrachtet,
so kann man sie nur in der Symbiose mit der Physik und Astronomie verstehen. Nur

in dieser Symbiose kann unsere geliebte Wissenschaft blithen und gedeihen und immer
jung bleiben. B. L. vAN DER WAERDEN, Ziirich
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