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Kleine Mitteilungen

Über geschlossene Raumkurven ohne einbeschriebenes Parallelogramm

Ein von H. Hadwiger gestelltes Problem1) lautet: Gibt es im dreidimensionalen
euklidischen Raum eine geschlossene Jordankurve (topologisches Bild der Kreislinie),
in die kein Parallelogramm einbeschrieben werden kann In verschärfter Fassung
sollen auch entartete Parallelogramme in dem Sinn ausgeschlossen sein, dass keine
kollinearen äquidistanten Punktepaare auf der Kurve liegen (Abstand null natürlich
ausgeschlossen). Wir zeigen, dass es in beiden Fällen Beispiele gibt, dass also nicht
jeder geschlossenen Raumkurve ein Parallelogramm einbeschrieben werden kann.

Sei k Stück einer echten, gewöhnlichen Schraubenlinie auf einem Kreiszylinder Z,
das sich einmal halb um den Zylinder herumwindet. Wir verbinden die Endpunkte
P, Q von k durch die Strecke PQ und erhalten so eine geschlossene Raumkurve S.

Ein S einbeschriebenes echtes Parallelogramm hätte offenbar zwei Punkte auf k und
zwei Punkte auf PQ. Denkt man sich Z senkrecht zu einer Grundebene E, so hat
aber die Gerade PQ bezüglich E grössere Steigung als die Verbindungsgerade irgend
zweier Punkte von k, von denen höchstens einer P oder Q ist. Das gesuchte Parallelogramm

kann es also nicht geben.
Nun liegen aber auf PQ noch ausgeartete Parallelogramme. Auch das kann man

vermeiden: Sei Z' 4= Z ein Kreiszylinder durch P, Q, dessen Achse zur Achse von Z
parallel ist. Der Durchmesser von Z' ist dann grösser als der von Z. Wir verbinden P
und Q auf Z' durch die kürzeste Linie k'. Diese ist wieder Teil einer Schraubenlinie.
Haben zwei Punkte _4, JE? auf k gleichen Abstand (> 0) wie zwei Punkte A', B' auf k!,
so sind die Steigungen der Geraden AB bzw A' Bf verschieden (die Steigungen hängen
nur vom Abstand der Punkte auf k bzw. kf ab). Also gibt es wieder kein Parallelogramm,

das k \J kf einbeschrieben ist.
Günter Ewald, Vancouver, Kanada

On Pyramidal Numbers of Order 4

A positive integer n is called a pseudoprime if n \ 2n — 2 and n is composite.
As the result of the questions raised by W. Sierphiski, I proved the following

theorems:
1. There exist infinitely many triangulär numbers which are at the same time

pseudoprimes. The «th triangulär number is the number tn n (n -f l)/2. The least
pseudoprime number which is at the same time triangulär is the number £33

3 • 11 • 17 561 (see [1]).

i) Ungelöste Probleme, Nr. 53, El. Math. 26, 58 (1971).
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2. There exist infinitely many pentagonal numbers which are at the same time
pseudoprimes. The nth pentagonal number is the number Wn n (3n — l)/2. The
least pseudoprime number which is at the same time pentagonal is the number
W73 73 • 109 7957 (see [2]).

The n-th pyramidal number of order 4 is the number

-?--» + * + - + «»-»(n + 1)(2wtil.
6

A. Danowski raised the question whether there exist pyramidal numbers of
order 4 which are at the same time pseudoprimes. Here we shall prove the following:

Theorem. If the numbers 12m + 1, 18m + 1 and 36m 4- 1 are primes, then the

pyramidal number P£ for n (22(18m+1) — l)/3 is a pseudoprime number.
Proof

Let 12 m -f 1, 18 m + 1 and 36 m -f- 1 be primes. Then

27 (12 m + 1) (18 m + 1) (36 m + 1) | 236™ - _ (1)

Let

n
22(18w + l) _ l

3

Then

n+l 236m+1+l 2w+l 23(12)w + D 4. 1

2 3 3 9

and
236/w + l _j_ 1 22(18m+1) — 1 23(12rc»+«+1

93 3

From (1) it follows that

236 wi+i _j_ i 22(18m+1) - 1 23(12m + l)

9
:+1si (mod M)

3 ' 3 i

where

M : 6 (12 m + 1) (18 m + 1) (36 w + 1)

Hence

i?E 1 (mod M)

The numbers

236 nt+i -|_ i 22(18m+1) - 1 23(12m + i;» + 1

(2)

are relatively prime in pairs, thus from (1) and (2) follows iy | 2M - 1 | 2pi~1 - 1

2P2 — 2 for n (22(18m+1) — l)/3 and JJ* is a pseudoprime number.
The Theorem is thus proved.
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For m 1 we get the following pyramidal number of order 4 which is pseudoprime.

D91625968981
237 1 239

3 3 9

1777 • 2731 • 174763 • 524287 • 22366891 • 25781083

Further pyramidal numbers of order 4 which are at the same time pseudoprimes are
obtained for m 15, 16, 45.

There exist exactly 17 even numbers m less than 1333 for which each of the numbers

12m + 1, 18m -f 1 and 36m -f 1 is a prime.
These are m 16, 56, 176, 206, 346, 350, 380, 470, 506, 540, 680, 710, 786, 946,

1156, 1200 and 1326.
From the hypothesis H of A. Schinzel (see [3]) it follows that there exist infinitely

many natural numbers m for which each of the numbers 12m +1, 18m + 1 and
36m + 1 is a prime.

Thus from our Theorem it follows
Corrollary. From the hypothesis H of A. Schinzel concerning primes it follows that
there exist infinitely many pyramidal numbers of order 4 which are at the same time
pseudoprime numbers.

A. Rotkiewicz, Warszawa
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Aufgaben

Aufgabe 662. Die untenstehenden Figuren stellen ein 8

wobei die 31 Zahlentäfelchen einmal in
natürlicher, einmal in umgekehrter Anordnung

stehen. Es seien m, n natürliche
Zahlen > 2. Man zeige, dass beim m X w-
Boss Puzzle die natürliche Anordnung
durch Verschieben von Zahlentäfelchen

genau dann in die umgekehrte Anordnung
übergeführt werden kann, wenn gilt: mn
s£ 1 oder m n 2 (mod 4).

A. Herzer, Wiesbaden

X 4 Boss Puzzle dar,
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