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Uber die Gauss-Kriimmung der Real- und Imaginirteilflichen
analytischer Funktionen

1. Einleitung

Beziehungen zwischen der Differentialgeometrie und der Funktionentheorie
lassen sich dadurch gewinnen, dass man analytischen Funktionen f(z) jeweils gewisse
Fliachen zuordnet, die differentialgeometrischen Eigenschaften dieser «geometrischen
Modelle» der betreffenden Funktionen untersucht und dabei funktionentheoretische
Ergebnisse durch differentialgeometrische Begriffe ausdriickt. Brauchbar sind fiir
diesen Zweck vor allem die Betragflichen und die Real- und Imaginarteilflichen.
Einschldgige Arbeiten stammen u. a. von Ullrich [9] und seiner Schule sowie von
Gackstatter [3], der die Nevanlinnasche Theorie der meromorphen Funktionen be-
handelt. In der vorliegenden Arbeit betrachten wir einige einfache geometrische Ei-
genschaften von Real- und Imaginirteilflichen, die fiir den genannten differential-
geometrisch-funktionentheoretischen Zusammenhang von Interesse sind.

2. Eine Abbildungseigenschaft

Einer analytischen Funktion f(z) = u(x, y) + dv(x, y) ordnen wir die Realteil-
fliche R(f), definiert durch

r(x,y) = (%, v, u(x y)) , (1)
und die Imaginirteilfliche I(f), definiert durch
T*(x%, y*) = (x* y*, v(x*, y¥)), (2)

zu. Unter Benutzung der Cauchy-Riemann-Gleichungen ergibt sich, dass beide
Flachen dieselbe Gauss-Kriimmung
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haben; vgl. [5], S. 318, und [7].
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Sind zwei Flichen isometrisch, so stimmt ihre Gauss-Kriimmung an entsprechen-
den Punkten iiberein. Dies ist eine notwendige Bedingung fiir Isometrie. Sie ist hin-
reichend fiir (lokale) Isometrie im Falle konstanter Gauss-Kriimmung; vgl. [6]. Im
vorliegenden Falle gilt der

Satz 1. Die durch x* = x, y* = y gegebene Abbildung der Realteilfliche (1) einer analy-
tischen Funktion [ auf deren Imagindrteilfliche I(f) ist flachentrew. Fiir nicht kon-
stantes [ ist diese Abbildung weder konform mnoch isometrisch. Fiir nicht lLineares f
15t ste micht geoddtisch.

Bewers. Die Flichentreue folgt aus der Gleichheit der Diskriminante der ersten
Grundformen,

g=g*=1+1f 2. (4)

Der Vergleich entsprechender Koeffizienten der ersten Grundformen ergibt, dass die
Abbildung nicht isometrisch sein kann, von dem Trivialfall f = konst abgesehen. Also
kann sie auch nicht konform sein, denn Konformitit und Fliachentreue zusammen
hdtten Langentreue zur Folge. Wegen (4) reduziert sich das bekannte Kriterium fiir
geoddtische Abbildungen (vgl. [6], S. 236) im vorliegenden Falle einfach auf die
Gleichheit entsprechender Christoffel-Symbole 2. Art

rjkm — Itikm — Uik Um

4 g

mit 7, k, m = 1, 2; hierbei bedeutet der Index 1 die Differentiation nach x und der
Index 2 die nach y. Wegen der Symmetrie der Christoffel-Symbole und wegen der
Laplace-Gleichung gibt es im vorliegenden Fall hochstens vier verschiedene I7,™.
Dies liefert die Bedingungen

Up Upe = Uy Uy s Uy Uy = Uy Uy

und noch zwei weitere, die gleichwertig sind. Komplexe Zusammenfassung ergibt
f' ' = 0. Hieraus folgt die Behauptung.
3. Flichentreue und Cauchy-Riemann-Gleichungen

Bemerkenswerterweise gilt die in Satz 1 genannte Flichentreue nicht nur fiir
Losungen u(x, y), v(x, y) der Cauchy-Riemann-Gleichungen, sondern auch noch fiir
Losungen eines allgemeineren Systems

v, = A(x,y) u, + B(x,y) u, , 5
v, = C(x, y) u, + D(x, y) u, ,
wenn man die Koeffizienten geeignet wihlt. Wir beweisen hierzu den folgenden

Satz 2. Es seien u(x, y) und v(x, y) Losungen des Differentialgleichungssystems (5) mit
den Koeffizienten

A=—-D=cosax,y), B=C=sina(x,y) (6a)
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[a(x, y) eine beliebige stetige Funktion) oder mit den Koeffizienten
A=D=cosa(x,y), —B=C=sina(x,y). (6b)

Dann ist die Abbildung x* = x, y* = y der Flichen (x,y, u(x, y)) und (x*, y*, v(x*, y*))
flachentreu.

Beweis. Aus (5) und der Gleichheit der Diskriminanten der ersten Grundform der
beiden Flichen folgt

(A2 + C*— 1) uZ + 2(AB + CD) u, u, + (B2 + D2 — 1) uy=0.

Dies ist erfiillt fiir
A+ C*=1, AB+CD=0, B4+ D?=1.

Der ersten und der letzten dieser drei Bedingungen geniigen wir, indem wir
A+iC=¢* und B+iD=¢%

setzen. Die zweite Bedingung liefert dann

2n+1)=n

f=oa+ R

Hieraus ergibt sich die Behauptung.

Die Cauchy-Riemann-Gleichungen entsprechen (66) mit konstantem o« = 7/2.
Fiir beliebiges konstantes « und zweimal stetig differenzierbares u(x, y) folgt aus (6d)
die Laplace-Gleichung, dagegen aus (6a) die Gleichung

kythy — 2ky 0, — kyu,, =0 (B =sina, By = cosa).

4. Paare analytischer Funktionen

Es liegt nahe, Paare analytischer Funktionen f und % zu betrachten, fiir die die
Realteilflichen R(f) und R(k) dieselbe Gauss-Kriimmung K(f) bzw. K(h) haben.
R. Jerrard [4] bemerkte, dass letzteres zutrifft, wenn f'(z) 4'(2) = 1 ist. Wesentlich
allgemeiner ist der folgende

Satz 3. Es seien f und h analytische Funktionen, die in etnem Gebiet D der komplexen
Ebene definiert sind und deren Ablestungen durch eine M obiustransformation verbunden
sind. Dann gilt: Die zugehorigen Realteilflichen R(f) und R(h) haben in jedem Punkt
von D dieselbe Gauss-Kriimmung K(f) bzw. K(h) dann und nur dann, wenn die
genannte Transformation die Form

gy @l (@) +b
besitzt.
Beweis. Wegen (3) muss
ly' | l¢' | ®)

1+ |y 1+ [gf
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mit @(2) = f'(2) und p(2) = A'(z) gelten. Setzen wir
_aeth
P = py— (ad —bc *+ 0)
in (8) ein, so erhalten wir die Bedingungen
lad —bc|=|al+|cP=|b]2+|d]2, cd+ab=0.
Hieraus ergibt sich (7).

Dieser Satz umfasst Jerrards Ergebnis als Sonderfall. Interessanterweise sind die
Transformationen (7) genau diejenigen, die den Rotationen der zu der p-Ebene geho-
rigen Riemannschen Zahlensphire entsprechen. Das leuchtet ein, wenn man bedenkt,
dass die Gruppe der Transformationen (7) die Bewegungsgruppe der sphirischen
Geometrie mit den «Geraden»

yIieP+cot+cp—y=0, cc+y2>0
und dem Linienelement
| do | T
dsg= ———— =} —-K dz
o= T ~ VKO 142
1st. Diese Transformationen lassen den chordalen Abstand
| p(z1) — @l23) |

YT+ Tt YT+ Tl
invariant; vgl. z.B. [2].

x (p(z1) , ¢(2,))

Den chordalen Abstand benutzt man u. a. im Zusammenhang mit normalen
Familien holomorpher und meromorpher Funktionen. Jerrard [4] bemerkte, dass
Martys.Kriterium fiir Normalitét (vgl. [8] und auch [1], S. 218) sich nun unter Benut-
zung der Gauss-Kriimmung formulieren ldsst. Dies ist ein Beispiel dafiir, dass funk-
tionentheoretische Ergebnisse manchmal in einfacher Weise durch differentialgeome-
trische Begriffe ausgedriickt werden kénnen.

Erwin Kreyszig und Alois Pendl, Universitdt Karlsruhe
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