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Über die Gauss-Krümmung der Real- und Imaginärteilflächen
analytischer Funktionen

1. Einleitung
Beziehungen zwischen der Differentialgeometrie und der Funktionentheorie

lassen sich dadurch gewinnen, dass man analytischen Funktionen f(z) jeweils gewisse
Flachen zuordnet, die differentialgeometnschen Eigenschaften dieser «geometrischen
Modelle» der betreffenden Funktionen untersucht und dabei funktionentheoretische
Ergebnisse durch differentialgeometrische Begriffe ausdruckt Brauchbar sind fur
diesen Zweck vor allem die Betragflachen und die Real- und Imagmarteilflachen
Einschlagige Arbeiten stammen u a von Ullrich [9] und seiner Schule sowie von
Gackstatter [3], der die Nevanhnnasche Theorie der meromorphen Funktionen
behandelt In der vorliegenden Arbeit betrachten wir einige einfache geometrische
Eigenschaften von Real- und Imagmarteilflachen, die fur den genannten differential-
geometnsch-funktionentheoretischen Zusammenhang von Interesse smd

2. Eine Abbildungseigenschaft
Einer analytischen Funktion f(z) u(x, y) + w(x, y) ordnen wir die Realteil-

flache R(f)> definiert durch

r(x, y) (x, y, u(xt y)) (1)

und die Imagmarteilflache /(/), definiert durch

r*(^,y*) (^,y*,^*,y*)), (2)

zu. Unter Benutzung der Cauchy-Riemann-Gleichungen ergibt sich, dass beide
Flachen dieselbe Gauss-Krümmung

I /" I2

(i + i/'it w
haben, vgl. [5], S. 318, und [7].
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Sind zwei Flächen isometrisch, so stimmt ihre Gauss-Krümmung an entsprechenden

Punkten überein. Dies ist eine notwendige Bedingung für Isometrie. Sie ist
hinreichend für (lokale) Isometrie im Falle konstanter Gauss-Krümmung; vgl. [6]. Im
vorliegenden Falle gilt der

Satz 1. Die durch x* x, y* y gegebene Abbildung der Realteilfläche (1) einer
analytischen Funktion f auf deren Imaginärteilfläche I(f) ist flächentreu. Für nicht
konstantes f ist diese Abbildung weder konform noch isometrisch. Für nicht lineares f
ist sie nicht geodätisch.

Beweis. Die Flächentreue folgt aus der Gleichheit der Diskriminante der ersten
Grundformen,

g - g* 1 + | /' |2. (4)

Der Vergleich entsprechender Koeffizienten der ersten Grundformen ergibt, dass die
Abbildung nicht isometrisch sein kann, von dem Trivialfall / konst abgesehen. Also
kann sie auch nicht konform sein, denn Konformität und Flächentreue zusammen
hätten Längentreue zur Folge. Wegen (4) reduziert sich das bekannte Kriterium für
geodätische Abbildungen (vgl. [6], S. 236) im vorliegenden Falle einfach auf die
Gleichheit entsprechender Christoffel-Symbole 2. Art

r tn _ Jkm _ Ujk Um

jk ~
g ~~T~

mit /, k,m 1, 2; hierbei bedeutet der Index 1 die Differentiation nach x und der
Index 2 die nach y. Wegen der Symmetrie der Christoffel-Symbole und wegen der
Laplace-Gleichung gibt es im vorliegenden Fall höchstens vier verschiedene rjkm.
Dies liefert die Bedingungen

«* Uxx Vx Vxx > Uy Uxx Vy Vxx

und noch zwei weitere, die gleichwertig sind. Komplexe Zusammenfassung ergibt

ff" 0. Hieraus folgt die Behauptung.

3. Flächentreue und Cauchy-Riemann-Gleichungen

Bemerkenswerterweise gilt die in Satz 1 genannte Flächentreue nicht nur für
Lösungen u(x, y), v(x, y) der Cauchy-Riemann-Gleichungen, sondern auch noch für
Lösungen eines allgemeineren Systems

vx A(x,y)ux+ B(x,y)uy,
w)

vy C(x, y) ux -f D(x, y) uy

wenn man die Koeffizienten geeignet wählt. Wir beweisen hierzu den folgenden

Satz 2. Es seien u(x, y) und v(x, y) Lösungen des Differentialgleichungssystems (5) mit
den Koeffizienten

A —D cos a(x, y), B C sin oc(x, y) (6a)
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[a(x, y) eine beliebige stetige Funktion] oder mit den Koeffizienten

A D cos ol(x, y) — B C sin a(x, y) (6b)

Dann ist die Abbildung x* x, y* y der Flächen (x, y, u(x, y)) und (x*f y*, v(x*, y*))
flächentreu.

Beweis. Aus (5) und der Gleichheit der Diskriminanten der ersten Grundform der
beiden Flächen folgt

(A2 + C2 - 1) u\ + 2(A B + CD) ux uy + (B2 + D2 - 1) u\ 0

Dies ist erfüllt für

A2+C2=l, _45 + CD 0, B2 + D2=l.
Der ersten und der letzten dieser drei Bedingungen genügen wir, indem wir

A + iC eia und B + iD eiß

setzen. Die zweite Bedingung liefert dann

,.« + <?__+!___.

Hieraus ergibt sich die Behauptung.
Die Cauchy-Riemann-Gleichungen entsprechen (6b) mit konstantem oc n\2.

Für beliebiges konstantes oc und zweimal stetig differenzierbares u(x, y) folgt aus (66)
die Laplace-Gleichung, dagegen aus (6a) die Gleichung

K uxx ~ %k2 uxy — kx uyy 0 (kx sin ol, k2 cos a)

4. Paare analytischer Funktionen

Es liegt nahe, Paare analytischer Funktionen / und h zu betrachten, für die die
Realteilflächen R(f) und R(h) dieselbe Gauss-Krümmung K(f) bzw. K(h) haben.
R. Jerrard [4] bemerkte, dass letzteres zutrifft, wenn f(z) h'(z) 1 ist. Wesentlich
allgemeiner ist der folgende

Satz 3. Es seien f und h analytische Funktionen, die in einem Gebiet D der komplexen
Ebene definiert sind und deren Ableitungen durch eine Möbiustransformation verbunden
sind. Dann gilt: Die zugehörigen Realteilflächen R(f) und R(h) haben in jedem Punkt
von D dieselbe Gauss-Krümmung K(f) bzw. K(h) dann und nur dann, wenn die

genannte Transformation die Form

— o t (z) + a
(7)

— o / \zi t a
besitzt,

Beweis. Wegen (3) muss

Iv'l \<P'\

i+lvl» 1+lpl*
(8)
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mit <p(z) f'(z) und y>(z) h'(z) gelten. Setzen wir

a w + b
w ————- (a d - b c 4= 0)r ccp + d v '

in (8) ein, so erhalten wir die Bedingungen

\ad-bc | \a \2+ \c |2= \b |2 + | rf |2, cJ-faö 0.
Hieraus ergibt sich (7).

Dieser Satz umfasst Jerrards Ergebnis als Sonderfall. Interessanterweise sind die
Transformationen (7) genau diejenigen, die den Rotationen der zu der 99-Ebene gehörigen

Riemannschen Zahlensphäre entsprechen. Das leuchtet ein, wenn man bedenkt,
dass die Gruppe der Transformationen (7) die Bewegungsgruppe der sphärischen
Geometrie mit den «Geraden»

y\<p\2jrC<p + C(p — y 0 cc + y2>0
und dem Linienelement

1 + \<p 12 '

ist. Diese Transformationen lassen den chordalen Abstand

y 1 + 1 v(*i) 12 y 1 + 1 -?w 12

invariant; vgl. z.B. [2].

Den chordalen Abstand benutzt man u. a. im Zusammenhang mit normalen
Familien holomorpher und meromorpher Funktionen. Jerrard [4] bemerkte, dass

Martys Kriterium für Normalität (vgl. [8] und auch [1], S. 218) sich nun unter Benutzung

der Gauss-Krümmung formulieren lässt. Dies ist ein Beispiel dafür, dass
funktionentheoretische Ergebnisse manchmal in einfacher Weise durch differentialgeometrische

Begriffe ausgedrückt werden können.

Erwin Kreyszig und Alois Pendl, Universität Karlsruhe
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