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Uber Peano-Kurven

§ 1. Einleitung

In der Differentialgeometrie ist es iiblich, eine ebene Kurve unter Beniitzung
kartesischer Koordinaten durch eine Parameterdarstellung x = x(f), y = y(¢) anzu-
setzen, wobei der Parameter ¢ auf ein geeignetes Definitionsintervall beschriankt zu
werden pflegt. Es war daher eine Sensation, als gegen Ende des vorigen Jahrhunderts
Peano [6] nachwies, dass die naturgemisse Voraussetzung der Stetigkeit der Koor-
dinatenfunktionen keineswegs hinreicht, um ein Gebilde zu erhalten, das dem ge-
wohnlichen Kurvenbegriff entspricht, sondern dass unter Umstdnden die Menge der
Punkte p(x, y) ein ganzes Flidchenstiick liickenlos ausfiillen mag. Sein inzwischen
klassisch gewordenes Beispiel (§ 4) zeigte, dass mittels geeignet konstruierter Abbil-
dungsfunktionen x(f) und y(¢), die zwar stetig, jedoch nicht differenzierbar sind, das
Einheitsintervall 0 < ¢ < 1 stetig auf das Einheitsquadrat 0 = x <1, 0=y =1
abgebildet werden kann. Kombination mit einer passenden topologischen Abbildung
wiirde dann auf die stetige Durchlaufung von beliebigen anderen einfach-zusammen-
hingenden Bereichen fiihren.

Hilbert (4] hat das Peanosche Beispiel unmittelbar darnach vereinfacht
abgewandelt (§ 3), wobei er die rein arithmetische Definition Peanos durch eine an-
schaulichere geometrische ersetzte. Eine weitere Vereinfachung erzielte schliesslich
Knopp [5], der statt eines Quadrats ein gleichschenklig-rechtwinkliges Dreieck ver-
wendete (§ 5).

Im vorliegenden Aufsatz sollen diese Dinge anhand eines Verfahrens ndher
beleuchtet werden, das bei fritherer Gelegenheit zu einer einheitlichen Erzeugung
verschiedenartiger «pathologischer» Kurven herangezogen wurde [7], [8]. Das ver-
wendete Abbildungsprinzip gestattet die explizite Auswertung der Zuordnung ¢ — ¢
fiir alle rationalen ¢ und liefert iiberdies hiibsche ornamental-dekorative Veranschau-
lichungen der stetigen Flichendurchlaufungen mittels gewisser Ndherungspolygone.

§ 2. Ein Erzeugungsprinzip fiir Peano-Kurven

Den Ausgang bildet ein bestimmter beschrinkter, einfach-zusammenhéngender
und abgeschlossener Fundamentalbereich F in der euklidischen Ebene, der stetig
durchlaufen, also mit einer stetigen Parameterbelegung versehen werden soll.
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Zu diesem Zweck wird vorausgesetzt, dass F inr = 2 flichenhafte, untereinander
kongruente und zu F dhnliche Teilbereiche F, (k = 1, 2, . ., r) zerlegt werden kann.l)
Es sei moglich, die F so zu reihen, dass je zwei aufeinanderfolgende ein Randstiick
gemeinsam haben und dass F; und F, an den Rand von F grenzen. Diese bereits
durch die Bezifferung gekennzeichnete Reihenfolge mag dadurch veranschaulicht
werden, dass man geeignete korrespondierende Innenpunkte in ihrer Aufeinanderfolge
durch Strecken verbindet. Das so entstehende, vom Eingangsfeld F, zum Ausgangs-
feld F, fiihrende und am Ende mit einer Pfeilspitze versehene Polygon heisse das
Grundmotiv (vgl. die durch Doppellinien hervorgehobenen Grundmotive in den Figu-
ren 1-6).

Nun werde ein Abbildungskatalog von (gleich- oder gegensinnigen) Ahnlichkeits-
transformationen A,: F — F, (k =1, 2, . . ., ) zusammengestellt, der das Grundmotiv
derart auf die Teilbereiche tibertrigt, dass das Ende des Bildmotivs in F, zum Anfang
des Bildmotivs in F, 4, unmittelbar benachbart ist. Falls dies moglich ist - eine
hinreichende Bedingung wird sogleich angegeben werden —, so kénnen die » Bild-
motive durch » — 1 einzufiigende Verbindungsstrecken zu einem «Ndherungspolygon
2. Ordnung» zusammengeschlossen werden. Die 7 durch die Ahnlichkeiten 4, erzeug-
ten Bilder desselben lassen sich dann analog zu einem Nadherungspolygon 3. Ordnung
ergdnzen, und dieses Verfahren kann beliebig fortgesetzt werden.

Der Fixpunkt a, der Ahnlichkeitstransformation 4, kann als Grenzpunkt der
abnehmenden Folge von ineinandergeschachtelten Teilbereichen A} « F fiir n — o0
aufgefasst werden. Fiir den Ahnlichkeitsfaktor 4 von 4, gilt nimlich A2 = 1)r < 1/2
und daher A* — 0. Neben @, + a, sei nun das Bestehen der «Anschlussbedingungen»

Ak-ar=Ak+1-a1 (k=1,...,7——1) (1)

vorausgesetzt. Da der durch (1) erkldrte Punkt b, sowohl dem Teilbereich 4, + F = F,
als auch dem Teilbereich 4+, - F = F,_; angehort, so liegt er auf dem gemeinsamen
Randstiick von F, und F, ,,. Hieraus folgt, dass 4, und a4, Randpunkte des Grund-
bereichs F sind. ,

Das Zahlensystem mit der Basis r beniitzend, wird hinfort eine Zahl des Defini-
tionsintervalls 0 < ¢ < 1 in der Form

oo
t=0,717y... = ¢ F mit 7, =0,1,...,7r—1 (2)
=1

geschrieben. Diesem Parameterwert ¢ wird nun jener Punkt $ zugeordnet, der durch
p="1i_£rg°T1T2...2:,~FnﬁtTk=Al+tk (3)

erkldrt ist. Da die Folge der auftretenden Teilbereiche monoton abnimmt und deren
Durchmesser wegen 4 << 1 gegen Null strebt, so konvergiert sie mit » — oo gegen
einen wohlbestimmten Punkt 4. Die so definierte Abbildung des Parameterintervalls
auf die Menge der Punkte des Fundamentalbereichs F ist eindeutig und stetig.

1) Das einfachste Beispiel ist neben dem Quadrat und dem gleichschenklig-rechtwinkligen
Dreieck das Rechteck im Normformat, also mit dem Seitenverhidltnis 1: l/f , das durch
Halbierung in zwei dhnliche Rechtecke zerlegt wird. Andere ebene Figuren mit der genannten
Zerlegungseigenschaft hat GoLomB [3] untersucht; siehe auch GARDNER [2].
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Zur Uberpriifung der Eindeutigkeit sind jene Werte ¢ zu betrachten, die durch
einen endlichen r-adischen Bruch dargestellt werden, da solche Zahlen auch als
unendlicher Bruch angeschrieben werden kénnen:

t=0, 11...7,00...=0, 7y...7,_ 17,77 ... mit 7,=7,—1, ¥=1r—1. (4)

Die Punkte p und p’, die der ersten bzw. zweiten Darstellung entsprechen, sind ge-
miss (3) '

p zlimTl...]:nA;t'F:Tl...Tm-—.lT -dl,

n— 00 m

5

p’=nli_r’rgoT1...Tm_1T,,',A:‘-F=Tl...Tm_lT,,’,-a,. i
Hierbei ist T = A;—,, wenn T, = A,; mit Riicksicht auf (1) ist also T, - a, =
T, - a, und daher p = §'.

Die Stetigkest folgt ebenfalls aus der Anschlussbedingung (1), denn zwei Werten ¢
und #/, welche die ersten # Ziffern nach dem Komma gemeinsam haben, entsprechen
zwei im selben Teilbereich T . . . T, - F gelegene Bildpunkte $ und $’, deren Abstand
sicher nicht grosser ist als A” 4, wenn d den Durchmesser von F bedeutet. Der Abstand
von p und p’ kann daher beliebig klein gemacht werden, wenn ¢ und ¢ sich nur genii-
gend wenig unterscheiden.

Dass anderseits jeder Punkt p € F durch einen (ein- oder mehrdeutig) bestimmten
Parameterwert ¢ erfasst wird, ist leicht einzusehen. Ist F, = A, - F ein Teilbereich,
dem p angehért, dann stellt 7, = £ — 1 die 1. Ziffer von ¢ dar. Wendet man anschlies-
send die inverse Transformation A;! auf p an, so erhidlt man einen neuen Punkt
pre F; ist F, = A,- F ein p, enthaltender Teilbereich, dann hat man mit 7, =/ — 1
die 2. Ziffer von ¢ usf. Die genannten Teilbereiche sind jedoch nicht immer eindeutig
bestimmt, so dass ein Punkt p unter Umstdnden mehreren Parameterwerten zugeord-
net sein kann.

Fiir rationale Parameterwerte t fillt die r-adische Darstellung periodisch aus:
t:O’Tl"‘Thrh+1"'Th+m’ (6)

wobei der Querstrich die Periode anzeigt. Der zugeordnete Punkt 4 ist dann festge-
legt durch

Pznl‘il]goTl"'Th(Th+1"'];z+m)n'F=Tl"'Th'ul : (7)
wobei # den Fixpunkt der Ahnlichkeitstranformation U = T,,,, . . . T},,, bezeichnet.

Der Punkt p ldsst sich mithin in jedem Fall explizit angeben.

Bezeichnet ¢ einen beliebigen Punkt von F und wendet man auf denselben
simtliche Transformationen 7; 7, ... T, an, die zu n-stelligen Briichen ¢ =
0,7,7,...1, gehoren, so erhilt man eine geordnete Menge von #” Punkten, die, in ihrer
natiirlichen Aufeinanderfolge durch Strecken verbunden, ein Ndherungspolygon n-ter
Ordnung von der Art der oben erwdhnten ergeben. Solche Ndherungspolygone ver-
mitteln eine gute Vorstellung von der erreichten Durchlaufung des Bereichs F und
bieten hiibsche Anregungen fiir Kreuzstichmuster oder dhnliche Handarbeitsvor-
agen.
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§ 3. Die Hilbertsche Peano-Kurve

Hier ist der Fundamentalbereich F das Einhettsquadrat 0 < x < 1,0 <y < 1.
Die Zerlegung erfolgt durch Ziehen der seitenparallelen Mittellinien in » = 4 Teil-
quadrate. Die Reihung derselben liefert als Grundmotiv zwangsldufig einen U-Haken.
Bei der Ubertragung dieses Grundmotivs auf die vier Teilquadrate bleibt unter
Beachtung der Anschlussforderung keine Willkiir mehr offen, und man gelangt mit
Beniitzung des Schemas in Figur 1 zu folgendem Abbildungskatalog:

2 r 1
A Ty, y~—7x,
1 1
Ay 2-—5‘96, y='2‘(1+y)
- (8
1 : 1
dg: ' =5 (1+2), ¥y =51+9);
1 ;1
Agx=La-y, y-la-».

Nach Berechnung der Fixpunkte a; (x =4"=0, y=9%"=0) und a4, (x =% =1,
y = 9" = 0) bestdtigt man, dass die drei Anschlussbedingungen (1) erfiillt sind:
Ayrag=Ay-a,=5,(0,1/2), Ay-a,=Ag-a,=0b,(1/2,1/2), Az-a,=A,-a,=
by (1, 1/2). Die genannten Punkte a,, b,, b,, b4, @, gehéren gemiss (4) und (5) der Reihe
nach zu den Parameterwerten ¢ = 0, 1/4, 1/2, 3/4 und 1.
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Figur 1
Niéherungspolygon 4. Ordnung der Hilbertschen Peano-Kurve.

Als Beispiel fiir die Ermittlung eines rationalen Punktes der Peano-Kurve sei
etwa der zu ¢ = 13/15 gehorige bestimmt. In dem zu verwendenden Vierersystem
schreibt sich dieser Wert ¢ = 0,31. Der entsprechende Punkt p fillt zufolge (7) mit
dem Fixpunkt der Ahnlichkeitstranformation U = A, A, zusammen, die gemiss (8)
durch ' = (3 — y)/4, ¥’ = (2 = x)/4 dargestellt wird; die Koordinaten von p lauten
daher x = 2/3, y = 1/3.
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Fragt man umgekehrt nach dem Parameterwert, der etwa zur Quadratmitte
g (1/2,1/2) gehort, so stellt man in Befolgung der Vorschrift aus § 2 zunéchst fest, dass
g allen vier Teilquadraten F, angehort. Entscheidet man sich beispielsweise fiir ¢ € F,,
also 7; = 0, und transformiert man dementsprechend ¢ mittels 47! nach ¢, (1, 1), so
ergibt sich aus g, € F; die zweite Stelle 7, = 2. Bei der nidchsten Transformation A;!
bleibt ¢, fest, so dass auch alle folgenden Ziffern den gleichen Wert 2 haben. Es ergibt
sich also ¢ = 0,02 = 1/6. — Hitte man hingegen mit g € F, oder ¢ € F, begonnen, dann
wire man zu ¢ = 1/2 gelangt (s. o. b,), wahrend ¢ € F, auf ¢ = 5/6 gefiihrt hitte?).

Zur Konstruktion von Ndherungspolygonen bietet sich vor allem dieser Mittel-
punkt g an, der nach § 2 durch alle n-stelligen Transformationen T; 7T, ... T, abzu-
bilden ist. Als 1. Approximation (n = 1) stellt sich der U-Haken des Grundmotivs ein,
als zweite (#n = 2) der durch Verbindung der Bildhaken im Schema von Figur 1
entstehende «zweiarmige Leuchter». Die Hauptfigur in Abbildung 1 zeigt das Néahe-
rungspolygon 4.0Ordnung (#n = 4). — Die Gesamtlinge des Ndherungspolygons n-ter
Ordnung betrdgt L, = 2" — 2-7,

§ 4. Peano-Kurven des Neunersystems

Ahnlich wie durch die Hilbertsche Viertelung des quadratischen Fundamental-
bereichs F lassen sich auch durch fortgesetzte Neunteilung des Quadrats Peano-
Kurven gewinnen. Fiir die Anordnung der neun Teilquadrate F,, . . ., I stehen aller-
dings zwer Grundmotive zur Verfiigung: eine Reihung nach dem «Serpentinentypy,
bei welcher Eingangsfeld und Ausgangsfeld diagonal gegeniiberliegen (Fig. 2-4),
und eine Reihung nach dem «Méiandertyp», bei welcher Eingangs- und Ausgangsfeld
zwei Nachbarecken von F besetzen (Fig. 5).

-1 -1 -
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Figur 2
Niherungspolygon 3.Ordnung einer Peano-Kurve vom Serpentinentyp 000 000 000.

2) Die hier verfolgte Vorgangsweise zur analytischen Erfassung der Abbildung ¢ — p oder ihrer
Umkehrung ist tibersichtlicher als die von BorEL [1] vorgeschlagene, die das Zweiersystem
verwendet. ‘
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Im Falle des Serpentinentyps weist das Grundmotiv drei parallele Langseiten auf,
deren Richtung bei der dhnlichen Ubertragung in die Teilquadrate erhalten bleiben
oder aber quergestellt werden kann. Diesen beiden gleichberechtigten Méglichkeiten
mogen die Kennziffern 0 bzw. 1 zugewiesen werden; jedes Abbildungsschema wird
dann durch eine neunstellige Bindrzahl charakterisiert. Die Ausschépfung aller Varia-
tionen fiihrt mithin auf insgesamt 2% = 512 verschiedene Durchlaufungen, wenn man
von kongruenten Modifikationen absieht.

Zur Kennzahl 000000000 etwa gehort der folgende, aus dem Schema von Figur 2
abzulesende Abbildungskatalog:

Al:x-—%—x, Yy =39

Ay =2 (-2, y==(1+9;

Ag: x'=—;—x, y'z%(2+y),

Ag ¥ =3 (4%, ¥=30B-9;

Agx =3 @2-%, ¥=1@2-9; - 0O)
Ag v =5 (1+%), ¥=501-9;

Ap =52+, =39

As:x’=13—(3—x), y’-——-g—(l—&—y),

A,,:x'=—§—(2+x), y'=%—(2+3’)

Nach Festellung der Fixpunkte a, (0, 0) und a, (1, 1) bestdtigt man, dass die Anschluss-
bedingungen (1) erfiillt sind. Mit Beniitzung des Quadratmittelpunktes ¢(1/2, 1/2)
ergeben sich durch Anwendung aller n-stelligen Transformationen 7; 7, ... T, die
Niherungspolygone, von denen Figur 2 das dritte (#n = 3) zeigt.

Die eben behandelte Annahme entspricht iibrigens genau der von Peano [6)]
konstruierten Durchlaufung des Einheitsquadrats. Unter Verwendung des Dreier-
systems definierte er nimlich die Zuordnung des Parameterwertes ¢ = 74, 7, 7573 . - -
(mit 7y = 0) zu den Koordinaten x =0, §;§,&; ... und y =0, 5, n, 73 . . . des Bild-
punktes p durch die fiir » = 1 geltenden Vorschriften

’ Tgn—1> ' 0
&, =1 wenn To+ Tyt + Ty,—s =4 (mod 2),
2 - Ton—1> 1
: ) - (10)
Ton s 0
Np =1 wenn Ty + Tyt + Te-1 =14 (mod 2).
|2~ Tans |1 J
Der Ubergang von ¢ = 0,7, 75...zut = 0,007, 75 . . . = £/9 zieht den Ubergang von
xzux' = 0,04, &...=x/3und vonyzuy = 0,07, %, ... = y/3 nach sich, also von

p zu A, - p. Analog ergibt sich auch fiir die {ibrigen Abbildungen 4, des Katalogs (9),
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Néaherungspolygon 3.Ordnung einer Peano-Kurve vom Serpentinentyp 010 101 010.

Figur 3
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dass sie durch den Ubergang von ¢ zu # = (¢ + k —1)/9 induziert werden. Damit ist

aber die Ubereinstimmung der Peanoschen Abbildung mit der durch (9) vermittelten

Naherungspolygon 3. Ordnung einer Peano-Kurve vom Serpentinentyp 111 111 111.
gesichert.

Figur 4

Beim Ersatz einer Ziffer O durch 1 an beliebiger Stelle der urspriinglichen Kenn-

zahl 000000000 sind in der betreffenden Zeile des Abbildungskatalogs (9) bloss die

Buchstaben x und y rechts vom Gleichheitszeichen zu vertauschen, was die Anschluss-
bedingungen offensichtlich nicht beeintrédchtigt. Figur 3 und 4 veranschaulichen durch

Niherungspolygone 3. Ordnung die Durchlaufungen mit den Kennzahlen 010 101 010

bzw. 111 111 111.
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Im Falle des Mdandertyps beginnt das Grundmotiv mit zwei langen Seiten und
endet mit vier kurzen. Bei der Ubertragung in die Teilquadrate ergibt sich mit Riick-
sicht auf die zu bewahrende Orientierung im wesentlichen nur eine einzige Méglich-
keit. Der zugehorige Abbildungskatalog lautet auf Grund des Schemas in Figur 5:

Alzx’-—-%-—y, ‘ y’-—--;x;j 1
A2:x’=~13—-y, y'=%~(1+x);

Ag: x'=~§~x, y’=%~(2+y),

A4:x’=%—(1+x), y’=—;~(2+y);

Ag o =5 2+%), ¥=5@2+9); (11)
Ag ¥ =3 (B2, ¥=5@2-9;

Ap ¥ =5@—y), ¥=3@2-%;

4 % =5 @=y), ¥=50-2;

A,,:x’:—;»(Z-{-x), y':%—y.

Nach Bestimmung der Fixpunkte a, (0,0) und 4, (1,0) bestdtigt man das Bestehen
der Anschlussbedingungen (1). Figur 5 veranschaulicht die Durchlaufung des Qua-
drats mittels des wiederum vom Mittelpunkt ¢ (1/2, 1/2) abgeleiteten Ndherungs-
polygons 3.0rdnung. — Die Linge eines solchen Nédherungspolygons #-ter Ordnung
betrigt (wie beim Serpentinentyp auch) L, = 3" — 3-7.

t..‘ t= 238 =2
ity | prety | gty [ ppeiy | ety | ity | gy | e | 1A =
e e e L [ D (] el (Tt ]
ST G T TR I i T bt U
mie 1 mr ;] m 1
E Schema E T e e S T (e T TS T e
3 s il | Toel | 1| Sofountel | gl | e Wbl | qefunddl EJJ IS S-s
N L piy | et | ey (11 by | et | bty [ r-:r"_f:-_g_
Sl il e (S g o ST T el ] |
l‘f—ull-llnl' 3 TS TR
— 9 mie 3 ph iy phirh e g
N =M IEAAL IR AR JNHJ I AT
l “E._...l S T e TR T T e T TR
e Mty [H 1T gy | goboendel | pdnntey | iy | gty {1 gty | gl
Fead I L IR YN IR I L AT
kel Tl | et TR T = TR TS i
pleeion [ pietoy ' 1] gy | gt | | gy | ot | By |y | ety
ol db A I R I AN I I
_1.‘!--'_ Ji Ji. 2= g ewwe g nes
- 9 mie 18 oo BN 10 wasn s | wommn I v S e |
el I g[S b wﬂ}c:' Foadl A0 N
/‘ ~ o el e lu-‘ﬂ L™ JE L™ b g ‘r-ﬂ [~
E F. Sy | ety [ {1 1] oy | gl | gty | gundy | || gy 9
] 9 e e (DSl ] tiphmiliphd ol [ RdTRI ] iy o
=R e TS T T TR T e T T T
Foee W o] £ et F by | gl | e
it iF, HHIE LA WP W,
s ol s d R o e~ b dR 3
t=0 t=4 1

Figur 5
Niherungspolygon 3.0rdnung der Peano-Kurve vom Miandertyp.
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Analoge Entwicklungen konnen selbstverstidndlich auch fiir Zerlegungen des
Quadratsin 7 = s? Felder mit s = 4, 5, . . . vorgenommen werden, wobei naturgeméss
eine Zunahme der brauchbaren Grundmotive zu erwarten ist.

§ 5. Die Knoppsche Peano-Kurve

Hier ist der Fundamentalbereich F ein gleichschenklig-rechtwinkliges Dreieck, das
durch die Mittelsenkrechte der Hypotenuse in = 2 dazu 4dhnliche Dreiecke F, und
F, zerlegt wird. Bei Verwendung der GauB3schen Zahlenebene, in der die Ecken von
F durcha=0,b=1undc= (1 + 7)/2 festgelegt seien, lautet der Abbildungskatalog:

A7 =cz A2 —1=c(z—1). (12)

Mittels der Fixpunkte 4, = 0 und a, = 1 bestitigt man das Bestehen der Anschluss-
bedingung (1).

Die Berechnung der Bildpunkte ¢ fiir rationale, im Zweiersystem anzuschrei-
bende Parameterwerte ¢ gemdss (7) geht leicht vonstatten. Als Beispiel sei etwa der
zu t = 1/3 = 0,01 gehorige Punkt p ermittelt: Er ist der Fixpunkt der Ahnlichkeits-
transformation U = A4, A4,, die durch 2’ = c¢ + ¢? z beschrieben wird; hieraus ergibt
sich z=2"=cc/(1 — ¢? = (2 + 1)/5, was p durch x = 2[5, y = 1/5 festlegt?).

Nimmt man zwecks Herleitung von Ndherungspolygonen den Ausgang vom
Inkreismittelpunkt ¢ = 1/2 + /2 (Y2 — 1) des Fundamentaldreiecks F, so erscheint
als Grundmotiv eine Strecke von der Linge s = (2 — }/2)/2, und die daraus entste-

1,1
€=2*2 =L
2
AN
r 1
| = L
m m
0 Schema ! r "
| ™ el
m m
| &8 | | - |
r 1 al .
u - | ™ | bl
m m m
1 3 -
t=0 t=5.% =1

Figur 6
Naherungspolygon 7. Ordnung der Knoppschen Peano-Kurve.

henden Niherungspolygone haben jeweils gleiche Seiten mit Richtungsinderungen
von 4 135° und + 90°. Das Polygon #-ter Ordnung besitzt 2* — 1 Seiten der Linge
2a-ni2 s Figur 6 zeigt das Ndherungspolygon 7. Ordnung.

W. Wunderlich, TH Wien

3) Eine direkte Kennzeichnung der zu rationalen Werten ¢ gehdrigen Punkte p wire nicht ohne
Interesse.
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Uber die Gauss-Kriimmung der Real- und Imaginirteilflichen
analytischer Funktionen

1. Einleitung

Beziehungen zwischen der Differentialgeometrie und der Funktionentheorie
lassen sich dadurch gewinnen, dass man analytischen Funktionen f(z) jeweils gewisse
Fliachen zuordnet, die differentialgeometrischen Eigenschaften dieser «geometrischen
Modelle» der betreffenden Funktionen untersucht und dabei funktionentheoretische
Ergebnisse durch differentialgeometrische Begriffe ausdriickt. Brauchbar sind fiir
diesen Zweck vor allem die Betragflichen und die Real- und Imaginarteilflichen.
Einschldgige Arbeiten stammen u. a. von Ullrich [9] und seiner Schule sowie von
Gackstatter [3], der die Nevanlinnasche Theorie der meromorphen Funktionen be-
handelt. In der vorliegenden Arbeit betrachten wir einige einfache geometrische Ei-
genschaften von Real- und Imaginirteilflichen, die fiir den genannten differential-
geometrisch-funktionentheoretischen Zusammenhang von Interesse sind.

2. Eine Abbildungseigenschaft

Einer analytischen Funktion f(z) = u(x, y) + dv(x, y) ordnen wir die Realteil-
fliche R(f), definiert durch

r(x,y) = (%, v, u(x y)) , (1)
und die Imaginirteilfliche I(f), definiert durch
T*(x%, y*) = (x* y*, v(x*, y¥)), (2)

zu. Unter Benutzung der Cauchy-Riemann-Gleichungen ergibt sich, dass beide
Flachen dieselbe Gauss-Kriimmung

|/ 2
ST wewies  se——————————————— 3
L+ 17 P o
haben; vgl. [5], S. 318, und [7].



	Über Peano-Kurven

