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Über Peano-Kurven

§ 1. Einleitung

In der Differentialgeometrie ist es üblich, eine ebene Kurve unter Benutzung
kartesischer Koordinaten durch eine Parameterdarstellung x x(t), y — y(t)
anzusetzen, wobei der Parameter t auf em geeignetes Defmitionsintervall beschrankt zu
werden pflegt Es war daher eme Sensation, als gegen Ende des vorigen Jahrhunderts
Peano [6] nachwies, dass die naturgemasse Voraussetzung der Stetigkeit der Koor
dmatenfunktionen keineswegs hinreicht, um ein Gebilde zu erhalten, das dem
gewohnlichen Kurvenbegriff entspricht, sondern dass unter Umstanden die Menge der
Punkte p(x, y) em ganzes Flachenstuck lückenlos ausfüllen mag Sem inzwischen
klassisch gewordenes Beispiel (§ 4) zeigte, dass mittels geeignet konstruierter Abbil-
dungsfunktionen x(t) und y(t), die zwar stetig, jedoch nicht differenzierbar smd, das

Einheitsintervall 0 ^ t fg 1 stetig auf das Einheitsquadrat O^^^l, Ogy^l
abgebildet werden kann Kombination mit einer passenden topologischen Abbildung
wurde dann auf die stetige Durchlaufung von beliebigen anderen einfach-zusammenhängenden

Bereichen fuhren
Hubert (4] hat das Peanosche Beispiel unmittelbar darnach vereinfacht

abgewandelt (§ 3), wobei er die rem arithmetische Definition Peanos durch eine
anschaulichere geometrische ersetzte Eine weitere Vereinfachung erzielte schliesslich

Knopp [5], der statt eines Quadrats em gleichschenklig-rechtwinkliges Dreieck
verwendete (§ 5)

Im vorliegenden Aufsatz sollen diese Dmge anhand eines Verfahrens naher
beleuchtet werden, das bei früherer Gelegenheit zu einer einheitlichen Erzeugung
verschiedenartiger «pathologischer» Kurven herangezogen wurde [7], [8] Das
verwendete Abbildungspnnzip gestattet die explizite Auswertung der Zuordnung t ->• p
fur alle rationalen t und liefert überdies hübsche ornamental-dekorative Veranschau-
hchungen der stetigen Flachendurchlaufungen mittels gewisser Naherungspolygone

§ 2. Ein Erzeugungsprinzip für Peano-Kurven

Den Ausgang bildet em bestimmter beschrankter, einfach-zusammenhängender
und abgeschlossener Fundamentalbereich F in der eukhdischen Ebene, der stetig
durchlaufen, also mit emer stetigen Parameterbelegung versehen werden soll
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Zu diesem Zweck wird vorausgesetzt, dass F in r ^>2 flächenhafte, untereinander
kongruente und zu F ähnliche Teilbereiche Fk (k 1, 2,. r) zerlegt werden kann.1)
Es sei möglich, die Fk so zu reihen, dass je zwei aufeinanderfolgende ein Randstück
gemeinsam haben und dass Fx und Fr an den Rand von F grenzen. Diese bereits
durch die Bezifferung gekennzeichnete Reihenfolge mag dadurch veranschaulicht
werden, dass man geeignete korrespondierende Innenpunkte in ihrer Aufeinanderfolge
durch Strecken verbindet. Das so entstehende, vom Eingangsfeld Fx zum Ausgangsfeld

Fr führende und am Ende mit einer Pfeilspitze versehene Polygon heisse das
Grundmotiv (vgl. die durch Doppellinien hervorgehobenen Grundmotive in den Figuren

1-6).
Nun werde ein Abbildungskatalog von (gleich- oder gegensinnigen)

Ähnlichkeitstransformationen Ak: F -> Fk (k 1, 2, r) zusammengestellt, der das Grundmotiv
derart auf die Teilbereiche überträgt, dass das Ende des Bildmotivs in Fk zum Anfang
des Bildmotivs in Fk+t unmittelbar benachbart ist. Falls dies möglich ist - eine
hinreichende Bedingung wird sogleich angegeben werden -, so können die r
Bildmotive durch r — 1 einzufügende Verbindungsstrecken zu einem «Näherungspolygon
2. Ordnung» zusammengeschlossen werden. Die r durch die Ähnlichkeiten Ak erzeugten

Bilder desselben lassen sich dann analog zu einem Näherungspolygon 3. Ordnung
ergänzen, und dieses Verfahren kann beliebig fortgesetzt werden.

Der Fixpunkt uk der Ähnlichkeitstransformation Ak kann als Grenzpunkt der
abnehmenden Folge von ineinandergeschachtelten Teilbereichen AI * F für n -> oo

aufgefasst werden. Für den Ähnlichkeitsfaktor A von Ak gilt nämlich A2 Ijr fg 1/2
und daher An -> 0. Neben ax 4= ar sei nun das Bestehen der «Anschlussbedingungen»

Ak • ar AkJtl • ax (k 1, r - 1) (1)

vorausgesetzt. Da der durch (1) erklärte Punkt bk sowohl dem Teilbereich Ak • F Fk

als auch dem Teilbereich Ak+t' F — Fk+1 angehört, so liegt er auf dem gemeinsamen
Randstück von Fk und Fk+1. Hieraus folgt, dass at und ar Randpunkte des
Grundbereichs F sind.

Das Zahlensystem mit der Basis r benützend, wird hinfort eine Zahl des
Definitionsintervalls 0 fg t ^S 1 in der Form

00

t 0, Ti t2 y}tk-r~k mit rk 0, 1,.. r — 1 (2)27T*r~* mi* tä 0, 1,.. r

geschrieben. Diesem Parameterwert t wird nun jener Punkt p zugeordnet, der durch

^ ~P*b>Ti T2' * *r« * F mit T* ^ A*+*k ^3)

erklärt ist. Da die Folge der auftretenden Teilbereiche monoton abnimmt und deren
Durchmesser wegen X < 1 gegen Null strebt, so konvergiert sie mit n -> oo gegen
einen wohlbestimmten Punkt p. Die so definierte Abbildung des Parameterintervalls
auf die Menge der Punkte des Fundamentalbereichs F ist eindeutig und stetig.

%) Das einfachste Beispiel ist neben dem Quadrat und dem gleichschenklig-rechtwinkligen
Dreieck das Rechteck im Normformat, also mit dem Seitenverhältnis 1: j/_T, das durch
Halbierung in zwei ähnliche Rechtecke zerlegt wird. Andere ebene Figuren mit der genannten
Zerlegungseigenschaft hat Golomb [3] untersucht; siehe auch Gardner [2].
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Zur Überprüfung der Eindeutigkeit sind jene Werte t zu betrachten, die durch
einen endlichen r-adischen Bruch dargestellt werden, da solche Zahlen auch als
unendlicher Bruch angeschrieben werden können:

* 0, r1...rm00... 0, xx...xm^x'mr'r'... mit x'm^xm-l, r' r-l. (4)

Die Punkte p und p', die der ersten bzw. zweiten Darstellung entsprechen, sind
gemäss (3)

* =}™Jl' ' 'Trn^ • F TX. .T^T,». a±,

P' J™ Ti • • • Tm -1 T^A: • F Tx. Tm _ t T± • ar
(5)

Hierbei ist T„ Ak-V wenn Tm Ak, mit Rücksicht auf (1) ist also Tm • ax
7^ • ar und daher p pr.

Die Stetigkeit folgt ebenfalls aus der Anschlussbedingung (1), denn zwei Werten £

und £', welche die ersten n Ziffern nach dem Komma gemeinsam haben, entsprechen
zwei im selben Teilbereich Tx. J„ • F gelegene Bildpunkte p und p', deren Abstand
sicher nicht grösser ist als Xn d, wenn d den Durchmesser von F bedeutet. Der Abstand
von p und p' kann daher beliebig klein gemacht werden, wenn t und t' sich nur genügend

wenig unterscheiden.
Dass anderseits jeder Punkt p e F durch einen (ein- oder mehrdeutig) bestimmten

Parameterwert t erfasst wird, ist leicht einzusehen. Ist Fk Ak • F ein Teilbereich,
dem p angehört, dann stellt tx k — 1 die 1. Ziffer von t dar. Wendet man anschliessend

die inverse Transformation A^1 auf p an, so erhält man einen neuen Punkt
pxG F; ist Ft A l - F ein px enthaltender Teilbereich, dann hat man mit r2 l — 1

die 2. Ziffer von t usf. Die genannten Teilbereiche sind jedoch nicht immer eindeutig
bestimmt, so dass ein Punkt p unter Umständen mehreren Parameterwerten zugeordnet

sein kann.
Für rationale Parameterwerte t fällt die r-adische Darstellung periodisch aus:

t 0,T1...Th ta + 1. .rÄ + m > (6)

wobei der Querstrich die Periode anzeigt. Der zugeordnete Punkt p ist dann festgelegt

durch

P=}imT1...Th(Th+1...Th+m)°.F==T1...Th.u, ¦ (7)

wobei u den Fixpunkt der Ähnlichkeitstranformation U Th+m TÄ+m bezeichnet.
Der Punkt p lässt sich mithin in jedem Fall explizit angeben.

Bezeichnet q einen beliebigen Punkt von F und wendet man auf denselben
sämtliche Transformationen Tt T2 Tn an, die zu w-stelligen Brüchen t
0, rt r2... rn gehören, so erhält man eine geordnete Menge von rn Punkten, die, in ihrer
natürlichen Aufeinanderfolge durch Strecken verbunden, ein Näherungspolygon n4er
Ordnung von der Art der oben erwähnten ergeben. Solche Näherungspolygone
vermitteln eine gute Vorstellung von der erreichten Durchlaufung des Bereichs F und
bieten hübsche Anregungen für Kreuzstichmuster oder ähnliche Handarbeitsvor-
agen.
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§ 3. Die Hilbertsche Peano-Kurve

Hier ist der Fundamentalbereich F das Einheitsquadrat Og^^l, Ogygl.
Die Zerlegung erfolgt durch Ziehen der seitenparallelen Mittellinien in r 4
Teilquadrate. Die Reihung derselben liefert als Grundmotiv zwangsläufig einen JJ-Haken.
Bei der Übertragung dieses Grundmotivs auf die vier Teilquadrate bleibt unter
Beachtung der Anschlussforderung keine Willkür mehr offen, und man gelangt mit
Benützung des Schemas in Figur 1 zu folgendem Abbildungskatalog'.

Ax: x'

A2: x' x,

y =T*;
y' \ (i + y);

As: x' \ (1 + x) y 4 (1 + y) ;

A,: x' » i- (2 - y) y' | (1 - x)

(8)

Nach Berechnung der Fixpunkte ax (x x' 0, y y' 0) und a4 (% #' 1,

y y' 0) bestätigt man, dass die drei Anschlussbedingungen (1) erfüllt sind:

^ • a4 - _42 • ax 6X (0,1/2) _42 • a4 A3 • ax 62 (1/2, 1/2) _43 • a4 _44 a,
bB (1,1/2). Die genannten Punkte alt bv b2, &ä, a4 gehören gemäss (4) und (5) der Reihe
nach zu den Parameterwerten t 0, 1/4, 1/2, 3/4 und 1.

Schema
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Figur 1

Näherungspolygon 4. Ordnung der Hilbertschen Peano-Kurve.

Als Beispiel für die Ermittlung eines rationalen Punktes der Peano-Kurve sei

etwa der zu t 13/15 gehörige bestimmt. In dem zu verwendenden Vierersystem
schreibt sich dieser Wert t 0,31. Der entsprechende Punkt p fällt zufolge (7) mit
dem Fixpunkt der Ähnlichkeitstranformation U AA _42 zusammen, die gemäss (8)
durch x* =» (3 — y)/4, y' (2 #)/4 dargestellt wird; die Koordinaten von p lauten
daher x 2/3, y 1/3.
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Fragt man umgekehrt nach dem Parameterwert, der etwa zur Quadratmitte
q (1/2,1/2) gehört, so stellt man in Befolgung der Vorschrift aus § 2 zunächst fest, dass

q allen vier Teilquadraten Fk angehört. Entscheidet man sich beispielsweise für q e Fx,
also rx 0, und transformiert man dementsprechend q mittels Ai1 nach qx (1, 1), so

ergibt sich aus qx e F3 die zweite Stelle r2 2. Bei der nächsten Transformation _4~J

bleibt qx fest, so dass auch alle folgenden Ziffern den gleichen Wert 2 haben. Es ergibt
sich also t 0,02 1/6. - Hätte man hingegen mit q e F2 oder q e F2 begonnen, dann
wäre man zu t 1/2 gelangt (s. o. b2), während q eF4 auf t 5/6 geführt hätte2).

Zur Konstruktion von Näherungspolygonen bietet sich vor allem dieser Mittelpunkt

q an, der nach § 2 durch alle w-stelligen Transformationen Tx T2 Tn

abzubilden ist. Als 1. Approximation (n 1) stellt sich der U-Haken des Grundmotivs ein,
als zweite (n 2) der durch Verbindung der Bildhaken im Schema von Figur 1

entstehende «zweiarmige Leuchter». Die Hauptfigur in Abbildung 1 zeigt das

Näherungspolygon 4. Ordnung (n 4). - Die Gesamtlänge des Näherungspolygons n-ter
Ordnung beträgt Ln 2n — 2~n.

§ 4. Peano-Kurven des Neunersystems

Ähnlich wie durch die Hilbertsche Viertelung des quadratischen Fundamentalbereichs

jp lassen sich auch durch fortgesetzte Neunteilung des Quadrats Peano-
Kurven gewinnen. Für die Anordnung der neun Teilquadrate Fx, _P9 stehen
allerdings zwei Grundmotive zur Verfügung: eine Reihung nach dem «Serpentinentyp»,
bei welcher Eingangsfeld und Ausgangsfeld diagonal gegenüberliegen (Fig. 2-4),
und eine Reihung nach dem «Mäandertyp», bei welcher Eingangs- und Ausgangsfeld
zwei Nachbarecken von F besetzen (Fig. 5).

5
Schema

m
L

n
Fij

_>

LKflJ
5 *>

(=;

fitn

36

ll
Et;

HPO

Figur 2

Näherungspolygon 3. Ordnung einer Peano-Kurve vom Serpentinentyp 000 000 000.

2) Die hier verfolgte Vorgangsweise zur analytischen Erfassung der Abbildung t -* p oder ihrer
Umkehrung ist übersichtlicher als die von Borel [1] vorgeschlagene, die das Zweiersystem
verwendet.
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Im Falle des Serpentinentyps weist das Grundmotiv drei parallele Langseiten auf,
deren Richtung bei der ähnlichen Übertragung in die Teilquadrate erhalten bleiben
oder aber quergestellt werden kann. Diesen beiden gleichberechtigten Möglichkeiten
mögen die Kennziffern 0 bzw. 1 zugewiesen werden; jedes Abbildungsschema wird
dann durch eine neunstellige Binärzahl charakterisiert. Die Ausschöpfung aller
Variationen führt mithin auf insgesamt 29 512 verschiedene Durchlaufungen, wenn man
von kongruenten Modifikationen absieht.

Zur Kennzahl 000000000 etwa gehört der folgende, aus dem Schema von Figur 2
abzulesende A bbildungskatalog:

Ax: x

A2'. x

_43: x'

A±: x'

_45: x'

_46: x

A7: x'

_48: x'

_49: x

%,

-T(i-*).

1(1 + -).

(2 - *),

y =-3-y;

y' -j (i + y)

y' 1 (2 + y)

y' (3 - y)

(2-y)

(1 + x) y' - (1 - y)

V (3 - *) «

T (2 + *),

y =Ty
4- (i + y);

(2 + y).

(9)

Nach Festeilung der Fixpunkte ax (0, 0) unda9 (1, 1) bestätigt man, dass die
Anschlussbedingungen (1) erfüllt sind. Mit Benützung des Quadratmittelpunktes #(1/2, 1/2)
ergeben sich durch Anwendung aller w-stelligen Transformationen Tx T2. Tn die

Näherungspolygone, von denen Figur 2 das dritte (n 3) zeigt.
Die eben behandelte Annahme entspricht übrigens genau der von Peano [6]

konstruierten Durchlaufung des Einheitsquadrats. Unter Verwendung des

Dreiersystems definierte er nämlich die Zuordnung des Parameterwertes t r0, xx r2 r3
(mit t0 0) zu den Koordinaten x 0, fx f2f3 und y 0, rjx rj2 r}3. des

Bildpunktes p durch die für n *z 1 geltenden Vorschriften

f„-

Vnz

T2n~l »

2 ~ T2n-X,

T2» »

2 - r2n,

wenn t0 -f- r2 H f- r2w-

wenn xx + t3 + f- r2„

mod 2),

mod 2)

(10)

Der Übergang von t 0, xx r2 zu V 0,00 tx t2 t/9 zieht den Übergang von
x zu #' 0,0 |x |2 x/3 und von y zu y' 0,0 ??x r\% y/3 nach sich, also von
pzu At' p. Analog ergibt sich auch für die übrigen Abbildungen Ak des Katalogs (9),
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Schema
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Figur 3

Näherungspolygon 3. Ordnung einer Peano-Kurve vom Serpentinentyp 010 101 010.
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Figur 4
Näherungspolygon 3. Ordnung einer Peano-Kurve vom Serpentinentyp 111 111 111.

dass sie durch den Übergang von t zu t' (t -f- ß —1)/9 induziert werden. Damit ist
aber die Übereinstimmung der Peanoschen Abbildung mit der durch (9) vermittelten
gesichert.

Beim Ersatz einer Ziffer 0 durch 1 an beliebiger Stelle der ursprünglichen Kennzahl

000000000 sind in der betreffenden Zeile des Abbildungskatalogs (9) bloss die
Buchstaben x und y rechts vom Gleichheitszeichen zu vertauschen, was die
Anschlussbedingungen offensichtlich nicht beeinträchtigt. Figur 3 und 4 veranschaulichen durch
Näherungspolygone 3. Ordnung die Durchlaufungen mit den Kennzahlen 010 101 010
bzw. 111 111 111.
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Im Falle des Mäandertyps beginnt das Grundmotiv mit zwei langen Seiten und
endet mit vier kurzen. Bei der Übertragung in die Teilquadrate ergibt sich mit Rücksicht

auf die zu bewahrende Orientierung im wesentlichen nur eine einzige Möglichkeit.

Der zugehörige Abbildungskatalog lautet auf Grund des Schemas in Figur 5:

Ax: x'

A2:

Aa: x

At: x'

A6: x

A9: x'

A7:

AB: x

Aa:

l
y =Tx

y >

T*'
4 l1 + *).

(2 + x),

(3-x),

(2-y),

y> ±(l + x) ¦

y' |(2 + y);

y' |(2 + y);

y' 4(2 + y);

y' ±-(2-y);

y 4 (2 - *) ;

4-(2-y), y' t (i

4(2 + *). y yy

(11)

Nach Bestimmung der Fixpunkte ax (0,0) und a9 (1,0) bestätigt man das Bestehen
der Anschlussbedingungen (1). Figur 5 veranschaulicht die Durchlaufung des
Quadrats mittels des wiederum vom Mittelpunkt q (1/2, 1/2) abgeleiteten Näherungspolygons

3. Ordnung. - Die Länge eines solchen Näherungspolygons n-ter Ordnung
beträgt (wie beim Serpentinentyp auch) Ln 3" — 3~".

5v
Schema
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Figur 5

Näherangspolygon 3. Ordnung der Peano-Kurve vom Mäandertyp.
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Analoge Entwicklungen können selbstverständlich auch für Zerlegungen des

Quadrats in r s2 Felder mit s 4, 5, vorgenommen werden, wobei naturgemäss
eine Zunahme der brauchbaren Grundmotive zu erwarten ist.

§ 5. Die Knoppsche Peano-Kurve

Hier ist der Fundamentalbereich F ein gleichschenklig-rechtwinkliges Dreieck, das
durch die Mittelsenkrechte der Hypotenuse in r 2 dazu ähnliche Dreiecke Fx und
F2 zerlegt wird. Bei Verwendung der Gaußschen Zahlenebene, in der die Ecken von
F durch a 0, b 1 und c (1 + i)/2 festgelegt seien, lautet der Abbildungskatalog:

Ax: z' c z, A2: z' - 1 l (z - 1) (12)

Mittels der Fixpunkte ax 0 und a2= 1 bestätigt man das Bestehen der Anschlussbedingung

(1).
Die Berechnung der Bildpunkte p für rationale, im Zweiersystem anzuschreibende

Parameterwerte t gemäss (7) geht leicht vonstatten. Als Beispiel sei etwa der
zu 2=1/3 0,ÜI gehörige Punkt p ermittelt: Er ist der Fixpunkt der
Ähnlichkeitstransformation U AXA2, die durch z' c c -f c2 z beschrieben wird; hieraus ergibt
sich z z' c cj(l - c2) (2 + i)/5, was p durch x 2/5, y 1/5 festlegt3).

Nimmt man zwecks Herleitung von Näherungspolygonen den Ausgang vom
Inkreismittelpunkt q 1/2 + i\2 (|/2 — 1) des Fundamentaldreiecks F, so erscheint
als Grundmotiv eine Strecke von der Länge s (2 — )/2)/2, und die daraus entste-

:l + ±
H

A ^_
Schema

1 3 Mt*0 t*T.74*4

Figur 6

Näherungspolygon 7. Ordnung der Knoppschen Peano-Kurve.

henden Näherungspolygone haben jeweils gleiche Seiten mit Richtungsänderungen
von ± 135° und ± 90°. Das Polygon n-ter Ordnung besitzt 2n — 1 Seiten der Länge
2(i-n)/2 s FigUr 6 zeigt das Näherungspolygon 7. Ordnung.

W. Wunderlich, TH Wien

8) Eine direkte Kennzeichnung der zu rationalen Werten t gehörigen Punkte p wäre nicht ohne
Interesse.
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Über die Gauss-Krümmung der Real- und Imaginärteilflächen
analytischer Funktionen

1. Einleitung
Beziehungen zwischen der Differentialgeometrie und der Funktionentheorie

lassen sich dadurch gewinnen, dass man analytischen Funktionen f(z) jeweils gewisse
Flachen zuordnet, die differentialgeometnschen Eigenschaften dieser «geometrischen
Modelle» der betreffenden Funktionen untersucht und dabei funktionentheoretische
Ergebnisse durch differentialgeometrische Begriffe ausdruckt Brauchbar sind fur
diesen Zweck vor allem die Betragflachen und die Real- und Imagmarteilflachen
Einschlagige Arbeiten stammen u a von Ullrich [9] und seiner Schule sowie von
Gackstatter [3], der die Nevanhnnasche Theorie der meromorphen Funktionen
behandelt In der vorliegenden Arbeit betrachten wir einige einfache geometrische
Eigenschaften von Real- und Imagmarteilflachen, die fur den genannten differential-
geometnsch-funktionentheoretischen Zusammenhang von Interesse smd

2. Eine Abbildungseigenschaft
Einer analytischen Funktion f(z) u(x, y) + w(x, y) ordnen wir die Realteil-

flache R(f)> definiert durch

r(x, y) (x, y, u(xt y)) (1)

und die Imagmarteilflache /(/), definiert durch

r*(^,y*) (^,y*,^*,y*)), (2)

zu. Unter Benutzung der Cauchy-Riemann-Gleichungen ergibt sich, dass beide
Flachen dieselbe Gauss-Krümmung

I /" I2

(i + i/'it w
haben, vgl. [5], S. 318, und [7].
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