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52 A. Herzer Eine Verallgemeinerung des Satzes von Dandelin

Für Strahlflächen mit beliebigen Richtkegeln und für Untersuchungen von
besonderen Fusspunktkurven kann das zweite Verfahren immerhin gelegentlich von
Nutzen sein.

Josef Krames, Wien
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Eine Verallgemeinerung des Satzes von Dandelin

Sei V ein i£-Linksvektorraum vom Range n. Der Verband der Unterräume von V
heisst projektiver Raum vom Range n über K, geschrieben L(V). Unterräume vom
Range 1 heissen Punkte, solche vom Range 2 heissen Gerade.

Dann gilt bekanntlich folgender Satz ([3], Theorem 4.2.1. Nach [1], 35, S. 62
wurde die eine Richtung dieses Satzes 1824 von Dandelin aufgezeigt):
L(V) sei ein projektiver Raum vom Range n über K, n 4. Genau dann gilt in L(V)
der Satz von Pappos, wenn folgendes gilt:
Sind ax, a2, a3, aA Gerade von L(V) mit der Eigenschaft, dass paarweise verschiedene
stets den Durchschnitt {0} besitzen, und bx,b2,bz, &4 Gerade von L(V), von denen
paarweise verschiedene ebenfalls den Durchschnitt {0} besitzen, ist überdies at O bk 4= {0}
für * 1, 2, 3, 4, * 1, 2, 3, 4, mit (i, k) 4= (4, 4), dann folgt auch a4 O 64 4= {0}.

Eine Verallgemeinerung dieses Satzes soll als «verallgemeinerter Satz von
Dandelin» bezeichnet und hier abgeleitet werden. Es ist möglich, die Beweise aus den
Axiomen der projektiven Geometrie ohne Zuhilfenahme von Koordinaten zu führen.
Da der Anmarschweg zu dieser Art von Beweisführung aber ziemlich lang ist, wollen
wir hier zum Beweis lieber den zugrundeliegenden Vektorraum benutzen. Dabei ist
der Satz von Hilbert zu beachten: Der Satz von Pappos ist äquivalent zur Kommuta-
tivität des Koordinatenkörpers (vgl. [3], Theorem 3.2.3. und 3.4.4.).

Wir gehen im folgenden stets von einem projektiven Raum L L(V) vom
Range m • n aus mit m > 1 und n > 1.

Definition 1. Ein (m, w)-Rahmen von L ist eine Menge {MQ, Mx,... Mn} von
Unterräumen von V, sämtlich vom Range m, für welche gilt:

®Mt~V, / 0,l,...,n.
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Definition2. Ein GebildeQmnist eine Menge {M0, Mx, Mn, N0, Nx, Nm} von
Unterräumen von V mit folgenden zusätzlichen Eigenschaften:
{M0, Mx, Mn} ist ein (m, n)-Rahmen von L.
{N0, Nx, Nm} ist ein (n, w)-Rahmen von L.
Es gilt MtONk± {0}, i 0, 1, n; k 0, 1, m.

Ist (vlk), i — 1, n; k 1, m eine Basis von V, dann lässt sich offenbar
ein Gebilde Qm,n wie folgt definieren:

Mt (vtk\ k 1, m}, i 1, ,n

M0 <£vtk\k=l,...,tny.
t l

Nk <vtk | *= 1, ,«>, k= 1, m.
m

N0=<Zvtk\i =l,...,n>.
Ä l

Es ist

MjONr (vjry, j l, ,n\ r =1, ,m
n

M0nNr (£vtr>> r=l,...,m.
j i

m

M^N^i^v^y, ] l,...,n.
* 1

n m

1 1 fc l
Wir zeigen nun, dass sich umgekehrt jedes Gebilde Qm,n mit geeigneter Basis (vtk) in
dieser Form darstellen lässt.

Die Menge {M0, Mx, Mn; N0, Nx, Nm} stelle ein Gebilde Qm>n dar.
n

Wegen © Mt V sind Mj O _Vr, Mn n iVr linear unabhängig. Nach Definition 2

muss jeder dieser Durchschnitte mindestens den Rang 1 haben; sie können aber auch
keinen höheren Rang besitzen, sonst folgte, dass der Rang von Nr grösser als n wäre.

Indem wir ebenso noch 0 Nk V beachten, erhalten wir schliesslich: Mt D Nk sind
Ä l

linear unabhängige Punkte für i 1, n, k 1, m. Also können wir eine Basis
(v'lk) von V so wählen, dass

M, O Nk <v\ky, i 1, n, k 1, m

Da auch M0 O Nk ein Punkt ist, folgt

M0n_VÄ=<2>,*0> k=l,...,m
1 1

mit geeigneten aik. Wäre für ein festes (/, r) etwa ajr 0, so folgte

t=-0
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da kein Vektor dieser Summe das Basiselement vjr als Summanden enthält. Dies ist
einWiderspruch zur Definition von &m> n. Also gilt at k 4= 0 für i 1,..., n, k 1,..., m.
Ebenso schliesst man, dass

MtnN0 (£;btkvtk>, i=l,... ,n

mit geeigneten blk 4= 0 für i 1, n, k 1, ,m. Wegen M0 ON0 4= {0}
erhalten wir nun für geeignete xk, yt:

tn ti ti tn

2Jxk(Uatkv\k) =Ey^Ehthv\k) •

Ä l 1 1 1 1 k l
Koeffizientenvergleich ergibt dann

xkaik yihik> i=l,-..,n, k=l,...,m.
Wäre für ein r etwa xr — 0, so folgte wegen bir 4= 0 nun yt 0 für i 1, n, also

MQnNQ= {0}. Also ist ztk: xk alk yl btk 4= 0 für i 1, n, k 1, m.
Setzen wir vlk ztkv'tk, so bildet daher auch (vtk) eine Basis von V. Wir erhalten:

MtnNk^(ztkv'tk) <ytky, i=l,...,n, k=l,...,m.
n n ti

M0nNk= <xk£atk v'tky <27^Ä <*,* v',*> <£vtk>> k=l,... ,m.
t-i i-i 1=1

tn tn tn

M,nN9= <y,Zbtkvlky <2>, blkv'tk> <2>,*>, » 1,..., n
A==l /5=1 fc i

ti tn n tn

M0ON0 (ZZzlk vtk> <£ 2>,*> • q.e.d.
1 1Ä 1 1 U-1

Definition 3. (@m>n) bezeichnet folgenden Schliessungssatz: In Z, sei ein Gebilde Qmn
(mit den Bezeichnungen von Definition 2) gegeben. M sei ein weiterer Unterraum von
V vom Range m und N ein weiterer Unterraum von V vom Range w.

Gilt dann

MC)Nk*{0} für & 0, 1, ...,m,
und

Mt O AT 4= {0} für * 0,1, n

dann folgt M O _V 4= {0}.

Jetzt sind wir in der Lage, den angestrebten Satz zu formulieren und zu beweisen
Satz (Verallgemeinerter Satz von Dandelin). L L(V) sei ein projektiver Raum
über K vom Range m • n mit m > 1, n > 1. Genau dann gilt in L der Schliessungssatz
(Qm,n)> wenn in L der Satz von Pappos gilt.

Beweis. Es gibt eine Basis (vik), i 1,..., n, k 1,..., m von F, so dass Qmn die
im Anschluss an Definition 2 aufgeführte einfache Darstellung besitzt. Wie zuvor
schhessen wir, dass M n Nk und MtnN jeweils Punkte sind.
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«
Sei nun M O Nk (£clk vtk), k 1, m, dann folgt aus M O _V0 4= {0} für

1 1

geeignete #Ä, ct die Bedingung
m « « tn

ExkiE^kvik) =£<>t(£vtk),
Ä=l 1=1 1-1 Ä=l

und daraus wieder die Gleichungen

xkCik= Ci > Xk * °> Ä= 1, ,w.
Also:

MONk= <xk2Jclk vlk) <2>, cIjfc vlft> <2>t VfÄ>
1=1 1=1 i=i

Es folgt

M <£ctvlk\k=l,...,m>.
1=1

Ebenso erhalten wir mit geeigneten dk:

N <jrdkvtk\i=l,...,n>.

In L gelte nun der Satz von Pappos, d.h. K ist kommutativ. Dann ist
tn n tn n n tn n tn

Edk(E^ vrk) E Zdk ct vtk=E Ect dk vtk=Ec^Edk *.*) e m n _v.
k l i l £-li l j-1/j 1 1 1 k l

Dieser Vektor kann aber nicht 0 sein, da wenigstens für ein (/, r) gilt c 4= 0 und
dr 4= 0 und jedes Basiselement vt k in der Summe genau einmal vorkommt. Daher folgt:

M HN * {0} das heisst, es gilt (QmJ

Umgekehrt sei nun in L die Gültigkeit von (Qm,n) vorausgesetzt.
Wegen MD/Y 4 {0} gibt es Zahlen xk und yt, so dass gilt

tn ti ti tn

Exk(E^vtk) =Ey^(Edkvlk) •

k=i i-i i i k i
Koeffizientenvergleich ergibt

xk ct yt dk i 1, n & 1, m

Wir wählen nun insbesondere M und N mit

cx 4= 0 4= c2 dx 4= 0 4= i2

Dann folgt: % 4= 0 4= #2, yx 4= 0 4= y2.
Für ß 1, 2 gelten die Gleichungen

** ci yi dk > h c2 y*dk.

Wir multiplizieren die Ausdrücke auf den beiden Seiten der ersten Gleichung von
links mit den Inversen der Ausdrücke (diese existieren!) auf den entsprechenden
Seiten der zweiten Gleichung:

c2-x xk"L xk cx djr1 y2-x yt dk
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Es folgt:

y^r1 yi di c2~x ci dr1 d2 c2-1 °i d^1
oder

^2-1 dx c2-1 ci c2_1 ci d2~x dx

Offenbar können s: c2~x cx und r: d2~x dx beliebige Werte aus K* annehmen, d.h.
es gilt r s s r für alle r, ss K*. Also ist K kommutativ, und in L gilt der Satz
von Pappos. q.e.d.

Bemerkung. Die Berechnung von M hat als Nebenergebnis: Durch jeden Punkt von
n

Nr geht genau ein M der verlangten Art. Sei M' (Ec'% vtk\k 1> ••• > w) eui
1=1

weiterer Unterraum vom Range m, der sämtliche _VÄ, A 0, 1, m, trifft, und
sei M O Af' 4= {0}. Es gibt also #Ä, y* mit

tn n tn ti

Exk(E^ vtk) =Eyk(Ec> v*k) •

Ä=l 1=1 Ä=l 1=1

Sei etwa %r 4= 0, also auch yr 4= 0. Dann gilt

xrct yrc[, i=l, ,n.
Daher

n ti ti

MDNr= {XrE^i Vtr> <EXr Ct Vir> <27^r C'i O
1 1 1 1 i l

<yriS>ir> M'niVr,

also Af AP.
Also bildet die Menge SR aller Unterräume M vom Range m mit Af O Nk 4= {0}

für A 0, 1,... m eine Schar zueinander paarweise windschiefer Räume und die
Menge 9t aller Unterräume N vom Range n mit Aft O N 4= {0} für * 0, 1,... n
eine zweite Schar paarweise windschiefer Räume.

Die Gültigkeit von (Qm>n) in L besagt dann gerade: Jedes Element der Schar 501

trifft jedes Element der Schar 9t. — Dann sind SR und 91 die beiden Scharen einer
Segreschen Mannigfaltigkeit Smin, die durch Qm,n also schon eindeutig bestimmt ist

n tn
und genau die Vektoren der FormEE c* dk vtk enthält (vgl. [2], Kap. IV, insbes.

§33.5). *'lh'1
Daher lässt sich der verallgemeinerte Satz von Dandelin auch auffassen als die

Angabe einer notwendigen und hinreichenden Bedingung für die Existenz einer
Segreschen Mannigfaltigkeit Smj n in L.

A. Herzer, Wiesbaden

LITERATUR

fl] W. Blaschke, Projektive Geometrie (Wolfenbüttel 1947).
[2] W. Bürau, Mehrdimensionale projektive und höhere Geometrie (Berlin 1961).
[3] A. Heyting, Axiomatic Projective Geometrte (Groningen-Amsterdam 1963).


	Eine Verallgemeinerung des Satzes von Dandelin

