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Kleine Mitteilungen

On Moser’s Problem of Accommodating Closed Curves in Triangles

In problem 11 of his well-known collection [2] of problems in combinatorial
geometry, Leo Moser asks, “What is the largest number f = f(a, b, ¢) such that every
closed curve of length f can be accommodated in the triangle (if it exists) of sides
a, b and ¢? How is it for arcs ?’

A closed curve I' can be ‘accommodated’ in a triangular region (4 BC) in different
ways. We might demand that (4 BC) contain a translate of I', or a displacement of I'
(i.e., the image of " under a direct isometry), or a congruent copy of I'. In each of the
first two interpretations, Moser’s problem is the dual of a problem solved in [3]. The
solution of the problem in all three interpretations is given below.

In theorem 2 of [3] we showed using Fagnano’s problem that a triangular region
(ABC) with angles «,  and y and perimeter $ contains a translate of every closed
curve of length L if and only if

L sina 4 sinf + siny )
2  SinxSinBSiny ' ,

p=

where Sinf = sinf when 6 is acute, and Sinf = 1 otherwise. It follows since (1) is
sharp that the largest number L such that the triangular region (4 BC) contains a
translate of all closed curves of length L is precisely

2 Sina Sinf Siny

 sina + sinf + siny

Rewriting this formula in terms of the sides a, b and ¢ (see formula (1) of [3]), we find

Theorem 1. If a, b and c¢ are the sides of a triangle, then the largest number
f, = f.(a, b, ¢) so that the triangular region (4 BC) with sides a, b and ¢ contains a
translate of every closed curve of length f, is

[ (@a+b+c)(—a+b+c)(@a—b+c)(a+b—c)
2abc

if (ABC) is acute,

[(@+b+c)(—a+db+c)(a—b+c)(a+b—c)]¥2 if (ABC)
max {a, b, c} is not acute.

In geometric terms, f, is the perimeter of the orthic triangle of (4BC) when
(ABC) is acute, and f, is twice the longest altitude of (4 BC) when (4 BC) is not acute.

In theorem 5 of [3] we showed using an inequality due to Eggleston that a
triangular region (4 BC) with angles «, § and y and perimeter $ contains a displace-
ment of every closed curve of length L if and only if

L (sina 4+ sinf + siny)?

p= 2n sine sinf siny

(2)
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It follows since (2) is sharp that the largest number L such that the triangular region
(A BC) contains a displacement of all closed curves of length L is precisely

27 p sina sin g siny
(sina + sinf + siny)?

Rewriting this formula in terms of the sides «, b and ¢, we find
Theorem 2. 1If a, b and ¢ are the sides of a triangle, then the largest number
fs = fs(a, b, c¢) so that the triangular region (4 BC) with sides a, b and ¢ contains a
displacement of every closed curve of length f; is
(—a+b+c)(@a—b+c)(a+b—c) |Y,

fs=m 4+ b+ ¢ - (3)

In geometric terms, f; is precisely the circumference of the inscribed circle of
(4 BC).

If f, = f,(a, b, ¢) is the largest number so that the triangular region (4 BC) with
sides 4, b and ¢ contains a congruent copy of every closed curve of length f,, we see
that f .- fs because every direct isometry is an isometry. On the other hand, f & = fs
because (4BC), whose incircle has circumference f,, must contain a circle with
circumference f,. Thus we find

Theorem 3. 1f a, b and c are the sides of a triangle, then the largest number f, =
{u(a, b, ¢) so that the triangular region (4 BC) with sides @, b and ¢ contains a congruent
copy of every closed curve of length /, is given by (3).

Only fragmentary results are known on the corresponding problem for arcs.
A partial result for the equilateral triangle appears in [1].

John E. Wetzel, University of Illinois, Urbana, USA
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A Note on the Elliptic Integral K(k)

We wish to point out the following particularly simple proof (cf. [1, 2]) of the
well-known limit relation

4
K(k) — log i

satisfied by the complete elliptic integral of the first kind

1 dt
K(k)==f oy 0<k<1.

-—>0, A>1-0
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Write

x 1 P
<= [+ [ o=m e

choosing » = x(k) as the fixed point of the continuous mapping ¢ =t of [0, 1] onto
[0, 1] defined by

(1—R22) (1— k2% =1—R2.

Clearly 7 decreases from 1 to 0 as ¢ increases from 0 to 1, so that » is a well-defined
point of (0, 1); furthermore

(1— ko) tdi+ (1 — R rde=0,

tY1-kr=)1-2, 1 -ke=j1-z,
dt dr

ya-ma-Em i e s
Hence

K(k) = 2 / oA
V(1 — ) (1 — k22

This at once yields

*

kd
K T 2log 2
(k)>2/1—k2t2 2B e

0

Ky <2 | % 2105 12
B <2 | g =2l —a
0
Put &’ = /1 — k% Then k% = /1 — &, 1/x = }/1 + *’ and we have

2o (%/? Mk?-) < K(k) < 2log ( 14+ Y1+ % )

3

from which the conclusion is immediate.

T. S. Nanjundiah, University of Mysore, India
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The Parity of Permutations

From time to time various articles have appeared in which it was shown that a
permutation cannot be expressed both as a product of an even number and as a
product of an odd number of transpositions. These proofs, and the usual textbook
proof, are algebraic in nature; in contrast we offer the following simple geometric proof.

Let b = {b,, ..., b,} be a permutation on {1, ..., #n}. Let « and § be two distinct
horizontal lines in the plane with » distinct points labelled 1, ..., #n in the order
1, ..., n from left to right on « and » distinct points labelled 1, ..., »# in the order
by, ..., b, on B so that no three of the segments joining some ¢ on « to some 7 on g are
concurrent. Let B be the number of intersection points of the set of segments y;
joining 7 on « to < on f. It suffices to show that a transposition (z, 7), ¢ < j changes the

(a, )il a, )3 A, )
i ~
_ A
- ~
( 8 )¢ 4, e 4 )
parity of B for then it follows that for every sequence of transpositions ¢, ..., ¢

determining a permutation p, the parity of % is equal to the parity of the associated
set P of intersection points.

We may assume 7 is to the left of j on 8 also. Let oy, oy and o3 be the set of
numbered points on « to the left of ¢, between 7 and j and to the right of 7 respectively.
Define §,, f, and B, in the same manner for g and let |«, §;| be the number of y
segments joining points of «, to points of 8. If 4 and j are now transposed on f then,
excluding the intersection of y; and y,, thereis anet increase of |ay B3| + |3 85| — |21 B |
intersection points on y; and |o; B3| + |ag Bo| — lag Bz| on ;. This gives a total
increase of 2 |a, B, | + 1 intersection points which results in a change in the parity of B.

R. C. Entringer, University of New Mexico, USA

A Theorem which is Equivalent to the Axiom of Choice

The purpose of this note is to establish the following simple theorem which we
have been unable to find in the literature.

Theorem. Every relation R is a union of functions with the same domain as R.

Proof. Let R be a relation with domain X. We may assume that X is nonempty.
Let F = {f|f is a function with domain X, and f C R}. The set F is nonempty.
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Indeed, if x€ X, let R(x) = {y | (, y) € R}, and set B= {R(x) | xe X}. By the
axiom of choice there is a function f: X — ( B such that f(x) € R(x) for each x € X;
clearly, fe F. Let U denote the union of the functions in F. Then U c R. Assume
that there is an element (x, y) in R which is not in U. Let f € F. Then (x, y) ¢ f. Since
f is a function with domain X there is a unique z € X such that (x, z) €f ¢ R. Define
a new function g from f by replacing the element (x, z) in f by the original element
(x,¥). Since f ¢ R and (x,y) € R we have g C R; that is, ge F. It follows that
(x,v) e g c U, contrary to the way that (x, y) was chosen. The proof is now complete.

It is easy to see that the axiom of choice is a consequence of the theorem. In fact,
if E={X,|aeA}is a nonempty family of nonempty sets, let R be the relation
from A4 into U E given by R = {(«, x,) | € 4, x, € X,}. By the theorem there is a
function f C R such that f(«) € X, for each a € 4, i.e., f is a choice function. Hence,
the theorem and the axiom of choice are equivalent.

R. S. Doran, Texas Christian University, USA

Aufgaben

Aufgabe 642. Am ebenen Dreieck mit Seiten abc, Inradius », Umradius R und
Fldacheninhalt rs beweise man die Verscharfung

(b—¢c)+ (c—a)*+ (a—b)?

2 2 L 2 fis _
+k[rs1/§+(4—2V§)r(R——2r)]<{a+b+cfur k=4

(@a+b+c)?2 fiar k=6

zweier Ungleichungen von H. Hadwiger, JBer. DMV 49, 2. Abt. S. 35-39.
I. Paasche, Miinchen

Solutron: Since

3[(b—c)2+ (c — a)®2+ (@ — b)2 — a® — b% — c?]
~ 2= = lem 0= et bt o

the two stated inequalities are equivalent. It accordingly suffices to prove the first.
For £ = 4 we have to prove
a4+ b2 24+ 4rsY3+4(4 —2)3)r (R—27) < 2(bc + ca + ab), (*)
or what is the same thing,
(@+b+c)2+4rsy3+4@4—2Y3)r(R—27r) <4 (bc+ ca+ ab).
Since

bc + ca + ab = s2 + 4 Rr + 2,
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