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A New Method of Evaluating the Sums of
P (—1)k+tk-% p=1,2,3,... and Related Series

o0
The decisive tool in our attempt to evaluate the sumZ (—1)*+1 £—2¢ for fixed
=51

peN={1,2,3,...} is the kernel of Dirichlet in both of its representations
(for all real x)

=_;f+ D coskx (meN). (1)

k=1

sin(2n + 1)5
2 sin 5

D,(x) =

First of all, let us consider

n

Cp(k)=ft2f’cosktdt, ke N;

0

a twofold integration by parts gives the recursive formula

2
Gt = =2 (= 1)1 — (25— 1) G,y (B} (eN)
ColR) =0
and hence, as is immediately verified?),
. ' 4 1 2 —J) 1
Cp(k) = (—1)kn(2p)! ])g; (—1)7 @ —q) + 1) k¥ (peN). (2)

1)  Formula 3.529.1 in [4] is obviously incorrect.
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Now, concerning the even moments of (1), i.e.,

M2 p;n) = /MD (peN),
we have, on the one hand, by the polynomial representation
M e C,(k
2p;m) = ——— 3
@im = e+ 2 G @
and on the other,
72 yzp
M(Zp;n)=22!’/ : sin(Z2n+ 1) ydy.
siny

0

The second mean-value theorem (cf. e.g. [6, p. 163]) yields
2

2p 2p 1
/?-sin(2n+1)ydy=(-”—) cs@ntDE e <™ peN)

siny 2 2n+1 2

since sin(2# + 1) y is continuous, whereas y2#/siny is non-negative and increasing
for y € [0, 7/2]. Thus, uniformly for all p € N,
M2 p;n) = 0Omn) (n — o0) .

This gives, using (3) and (2),

72b b 72— 1
im {——— s 1)k+1 (2 p)! 1)i+1 - —
"—*°°{ 22p+1) 2( ) yZ: (2 -7 +1! k“}
or
0 2 —j) 1 720
. k+1 ]+1 - s B e (S N .
& e G e T e peh
After extracting the term for 7 = p, the desired formula reads
oo (__1\k+1 2p
2,(___}2“__ = (—1)p+1 '
- R 22p+1)! @)
p-1 20 —J) 1

3 1)k+1 (—1)p+i : .
- AU L Y T

From (4), by recursion for p =1, 2, 3, ... the sums are easily calculated: in case
p = 1 it follows directly that

oo (__ 1)k+1 nz

——— = 5
~ R 12° ©)
for p = 2, together with (5),
o (__1)k+1 P a2 2 1)k+1 | |
S et R R Tt
= Ok 240 6 ~t 240 72
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so that
S
= 7t 6
= m 720 ©)
continuing in this way, for » = 3 now using both (5) and (6), one obtains
2, (—1)k+1 31
S
= ke 30240

The standard proof (see e.g. [2, p. 245ff], [1, p. 244]) by means of the theory of
Bernoulli polynomials leads to
o) (_1)k+1 (_1)p+17z2p

k;' BT 2(2p)!

(224 — 2) By, (#eN) (7)

where B,, are the Bernoulli numbers. These, in turn, may be deduced from the
symbolic equation (i.e. expand (8) and set formally B* = B,)

(B+1)"—B"=0, By=B'=1, n=123,..., (8)

cf. [1, p. 233], [2, p. 185].

Of course, neither (4) nor (7) are actually closed expressions for the sum since the
Bernoulli numbers are obtainable only via the recurrence formula (8). But (4) has the
advantage of avoiding the use of B,,; moreover a comparison of (7) and (4) gives
another way of evaluating these numbers.

In view of the obvious relations, cf. [2, p. 246],

220 00 (__ 1)k+1

Zkﬂp = 2 _ 2 E2p

k=1

(o] 22[;”__1 00 (__1)k+1
2 2k——1” T2 2 &~ R

k=1

the sums of these series may also be derived immediately from (4).

In the particular case p = 1, there is a proof in [5] using another kernel, namely
that of Fejér, whereas the method employed in [3] is implicitely based upon the kernel
of de La Vallée Poussin. This reveals that these kernels originating from approxi-
mation theory, also play an interesting réle in a quite different branch of analysis.

Eberhard L. Stark, Technological University of Aachen, Germany?)
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2)  The author is indebted to Professor P.L.ButzER for many helpful remarks. A support of the
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