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A New Method of Evaluating the Sums of
oo

Z (—l)k+1 k"2p, p 1, 2, 3,... and Related Series
k~l

oo

The decisive tool in our attempt to evaluate the sum J^(—1)*+1 k~2p for fixed
k=i

pe N {1,2,3, .} is the kernel of Dirichlet in both of its representations
(for all real x)

D°w m{9^1H -y + Zcoskx <W6N>• w

First of all, let us consider

n

Cp(k)^ f fiPcosktdt, keN;
o

a twofold Integration by parts gives the recursive formula

c#) 4r «-W*»-1 - (2 ^ -!) cp-iW} (P e N)

c0(k) o

and hence, as is immediately verified1),

C,(„) - (-1)^20! jfr(-l)'-» (2^7+D' ^ ^^^ (2)

1) Formula 3 529 1 in [4] is obviously mcorrect
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Now, concerning the even moments of (1), i.e.,

n

M{2 p; n) j *»* Dn(t) dt (p e N)
0

we have, on the one hand, by the polynomial representation

jr2p + l n

M(2*;^T(27TTr + £C*(*); (3)

and on the other,
n/2

M(2p;n) 22p / -+ sin(2 n + 1) y dy
J siny
o

The second mean-value theorem (cf. e.g. [6, p. 163]) yields

njl

f y2p (7ZYP cos(2n4- 1)1"(t) 71

- sin(2n + 1) ydy — I ± —~ (0<|<-,weN)siny " y \ 2 / 2n+l v 2
o

since sin (2n + 1) y is continuous, whereas y2p/smy is non-negative and increasing
for y g [0, :rc/2]. Thus, uniformly for all p e N,

M{2 p; n) 0(n~x) (n -> oo)

This gives, using (3) and (2),

or
oo p jtMP-j) 1 n2p
;T(__i)*+i V(-1)j+i_— - — (PeN).hK ] h (2 (p-j) +1)1 k2J 2(2p + l)\

KV }

After extracting the term for / p, the desired formula reads

oo / 1U + 1 jrlP

& W> x ' 2(20+1)1

*~i ^i ;
(2 (/>-/) + *«

(4)

From (4), by recursion for p 1, 2, 3, the sums are easily calculated: in case

p 1 it follows directly that

ri_y —; (5)
k4i k2 12' v'

for ^> 2, together with (5),

(-1)*+1 n* t.2 Ä(-l)*+1 ?r4 tt4

Ä A* 240 ^ 6 Ä 4-
6 fe4l £2 240 72 '
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SO that
oo f_l)k + l 7£Hr--m*-' (6)

continuing in this way, for p 3 now using both (5) and (6), one obtains

^(-1)*+1 31
6

fc?\ & 30240 n'""
The Standard proof (see e.g. [2, p. 245ff], [1, p. 244]) by means of the theory of

Bernoulli polynomials leads to
oo (_l)k + l (—l)P + ^7T2p

where B2p are the Bernoulli numbers. These, in turn, may be deduced from the
symbolic equation (i.e. expand (8) and set formally Bn Bn)

(B + l)n - Bn 0 B0 B° 1 n 1, 2, 3, (8)

cf. [1, p. 233], [2, p. 185].
Of course, neither (4) nor (7) are actually closed expressions for the sum since the

Bernoulli numbers are obtainable only via the recurrence formula (8). But (4) has the
advantage of avoiding the use of B2p; moreover a comparison of (7) and (4) gives
another way of evaluating these numbers.

In view of the obvious relations, cf. [2, p. 246],

~ 1 22* ~ (-1)*+1
j£i~k*P 22*-2 Ä k2p '

(peN)
oo t ^ 22p- 1 ~ (-1)*+1

fc{ (2 k- l)2p~ ^ 22^-2 k4i k^
the sums of these series may also be derived immediately from (4).

In the particular case p 1, there is a proof in [5] using another kernel, namely
that of Fej6r, whereas the method employed in [3] is implicitely based upon the kernel
of de La Valtee Poussin. This reveals that these kerneis originating from approximation

theory, also play an interesting röle in a quite different branch of analysis.

Eberhard L. Stark, Technological University of Aachen, Germany2)
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