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The Planarity of the Equilateral, Isogonal Pentagon

In arecent publication, van der Waerden has shown that the equilateral, isogonal
pentagon must be planar and has also given some interesting insights into the mental
processes that led him to his proof of the theorem [1]. As van der Waerden graciously
acknowledged, he was made aware of this remarkable property of the pentagon in the
course of a conversation with one of us (J. D. D.) in 1969, but the property was first
recognized (by J. W.) more than 25 years earlier, in the course of an electron-diffrac-
tion study of gaseous arsenomethane, (AsCH,),. It must be very rare that a mathe-
matical discovery?!) has been made from the results of an experimental molecular-
structure investigation so that a brief account of the earlier developments may be of
interest in supplementing van der Waerden'’s description.

The result of the electron-diffraction study of arsenomethane [2] was a radial-
distribution function?) consisting of only two peaks, a sharp one at 2,42 A and a
broad one, of approximately the same area, centred at 3.44 A. Since As...As inter-
actions would have to dominate over all others (Z 45 = 33, Z¢ = 6, Zg = 1) it follows
that each arsenic atom in the arsenomethane molecule has the same number of

1) We claim no thorough acquaintance with the mathematical literature but, as far as we are
aware, this property of the pentagon had not been recognized earlier. At any rate it came as
something of a surprise not only to vAN DER WAERDEN (loc. cit.) but also to G. PéLya, with
whom J. D. D. discussed the problem in February, 1970. Pérya disclaimed any previous
knowledge of the theorem and added “‘if vaAN DER WAERDEN didn’t know about it then
it wasn’t known to mathematics”!

%) In the electron-diffraction method a beam of monochromatic electrons (A ~ 0.06 A) im-
pinges on a stream of gas emerging from a nozzle into an evacuated chamber. The electrons
are scattered by the molecules, and the scattered intensity recorded on photographic film.
The intensity pattern, which is radially symmetric, depends on the structure of the molecules,
specifically on the atomic numbers of the constituent atoms and on the interatomic distances.
The Fourier-transform of the experimental intensity distribution is known as the radial
distribution function, » D(r). It consists of a set of nearly Gaussian peaks at various distances
r from the origin, corresponding to the various interatomic distances occurring in the mole-
cule. The height of each peak is roughly proportional to the product of the atomic numbers
of the two atoms involved in that particular distance. For further details see any book on
modern structural chemistry.
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unbonded neighbours (at approximately 3.44 A) as bonded neighbours (at 2.42 A).
This is possible only if the arsenic atoms form a five-membered ring, in which the
average As-As-As angle would have to be about 90°, a value close to the expected
valency angle at arsenic [3]. In a four-membered ring, which is at first sight suggested
by the 90° angle, each arsenic atom would have twice as many bonded neighbours
as unbonded.

The breadth of the peak at 3.44 A then had to be explained. It implies that the
cross-ring As...As distances are unequal. Since the bonded As-As distances are equal,
as shown by the sharpness of the 2.42 A peak, this would mean that the As-As-As
angles are unequal. Why should they be unequal? Thinking about this question led
J. W. to the recognition of a unique property of the pentagon [4].

“Of all n-gons (n > 4) the pentagon is the only one for which the following is
true: The construction of an equilateral, equiangular pentagon is possible for only
two values of the angle. For all other #-gons (excepting the trivial case of the triangle)
there is a whole range of angles for which an analogous construction is possible. The
pentagon under consideration is planar, the possible angles are 108° and 36°.”

In an equilateral pentagon with average angle of 90° the angles must then be
unequal; the equilateral pentagon with all angles equal to 90° cannot be constructed!
The proof provided by J. W. (not published at the time) was simple and straightfor-
ward. Slightly condensed, it runs as follows:

A pentagon (vn space) with all angles and all distances equal must be planar

Since (2 = <3, the grouping 1234 must possess at least a dyad axis; it may
also possess a mirrorplane (Fig. 1).

1(0) O (0} (0) Figure 1

Equilateral, isogonal pentagon, showing heights

of vertices from a reference plane. In A4, the
grouping 1234 has C,, symmetry, in B only C,

1 0 1 3 e e symmetry.

| -
A B

Case a) Suppose 1234 possesses C,, symmetry. Then since 2-5 = 3-5, the penta-
gon itself has a mirrorplane perpendicular to 2-3, passing through 5 (Fig. 1A).

Case b) Suppose 1234 possesses only C, symmetry. Again, since 2-5 = 3-5,
5 lies on the plane that is the perpendicular bisector of 23 and, since 1-5 = 4-5, also
on the plane that is the perpendicular bisector of 14. These planes do not coincide by
assumption; the line they share is the dyad axis of 1234, and thus a dyad axis of the
pentagon itself (Fig. 1B).

Passing round the pentagon, an exactly analogous argument can be applied for
every grouping of four vertices. In every case, the remaining vertex must lie on a
mirrorplane or dyad axis of the pentagon. The resulting system of intersecting

mirrorplanes and/or dyad axes must possess at least Dy symmetry and hence the
pentagon must be planar.
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The spark in the genesis of this proof was the idea of considering just four of the
five points. It was quickly realized that the four points had to be related by a dyad
axis, with two additional mirror planes when the points were coplanar. It was then
straightforward to demonstrate that the fifth point had to be on the dyad-axis in
the non-planar case, and on the mirror plane perpendicular to the plane of the four
points in the second case. The fact that the combination of the symmetry elements
obtained by cyclic permutation would lead to D, or D;, was prior knowledge; the
mind was, so to speak, programmed by relationships of this kind, and this may well
have contributed to the genesis of the proof.

Several years later, the structure of crystalline arsenomethane was determined
by X-ray diffraction analysis and the puckered pentagonal structure of the molecule
confirmed [5]3). The structures of several rings containing arsenic and phosphorus
atoms were later discussed by Donohue to whom it was known that ““the only equi-
lateral, isogonal pentagon is planar’’ [6]. Nevertheless, the theorem did not become
generally known to structural chemists.

If J. D. D. had ever known of it, he had forgotton it by 1966 when he came across
a paper on the conformations?) of five- and six-membered rings [7]. This paper con-
tains the statement: for a regular five-membered ring which is in the “envelope”
conformation and has side / and internal angle 2 «, the angle ¢ between the planes
BCD and ABDE (Fig. 2) is given by

oS = ——— e )

Figure 2
Dihedral angle ¢ between the planes BCD and ABDE.

A few minutes consideration showed that the regular five-membered ring as
described must be planar since, if all angles are set equal to 2«, then

BD =17(1 —2cos2a) = 2/sina

which is satisfied only for 2« = 108° (or 36°). The formula given for the dihedral angle
was obviously incorrect!

J. D. D. was sufficiently impressed and excited by this result that he told it
almost immediately to J. Donohue, on sabbatical leave from the University of
Pennsylvania, who was spending the academic year 1966-1967 in Zurich. It came
as no surprise to Donohue, who already knew of the result in the more general formu-

3) In crystalline arsenomethane, the individual As-As-As angles in the puckered five-membered
ring are: 100.4°, 100.0°, 105.6°, 105.4°, 97.5°, mean value 101.8°. The conformation is about
midway between one of mirror symmetry and one with a dyad axis (see%)).

4) In chemistry, the different possible shapes of a molecule with given bond distances and
angles are called conformations.
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lation. According to him, it had been well known among the members of the struc-
tural chemistry group at the California Institute of Technology around 1944-1945,
but he could not recall any general proof.

J. D. D. was soon able to provide trigonometric proofs for the special cases of the
equilateral, isogonal pentagons with C, and C, symmetry. He was convinced that
the theorem must be true in the general case but the proof eluded him until he suddenly
realized the importance of a property of the pentagon that he had known all along
but without connecting it with the problem. If all sides are equal and all angles are
equal, then all 1,3-diagonals are equal. Since each 1, 3-diagonal of a pentagon is also
a 1,4-diagonal, the torsion angles®) must also be equal at least in magnitude, if not
in sign.

Referring back to Figure 1, suppose that the torsion angles w(3451) and w(4512)
have opposite signs; then points 2 and 3 lie on the same side of the plane 451 and are
displaced from this plane by the same amount, so that the points 1, 2, 3, 4 are co-
planar. In this case the torsion angle w(1234) is zero, hence all torsion angles are zero
and the pentagon is planar. Suppose alternatively that »(3451) and w(4512) have
the same sign; then points 2 and 3 are equally displaced from the plane 451 but
lie on opposite sides of it. In this case the pentagon has a dyad axis passing through
5. Again, the argument can be applied to each vertex in turn. Either some torsion
angle (and hence all torsion angles) must be zero or we have a dyad axis through
each vertex, leading to D, symmetry and planarity, as in J. W.’s proof.

In the meantime we have learned of three other proofs in addition to that given
by van der Waerden [1]. One of these, by Ruch [8], is geometrical, like the proofs
already discussed, but it introduces some new aspects.

Because of the equality of the sides and angles of the pentagon, the five diagonals
are equal in length. By omitting each vertex in turn we obtain five tetrahedra. Each
tetrahedron has as its six edges three connected sides and three connected diagonals
of the pentagon. The five tetrahedra are thus identical or mirror images.

Let AM = MD and BN = NC (Fig. 3). Since 4ABD = 4ADCA and 4ABC =
ADBC it follows that BM = CM and AN = DN, so that the line MN is perpendicular
to BC and AD and hence a dyad axis of the tetrahedron ABCD. The point E must also

5) In chemistry, the torsion angle w(ABCD) is defined as the angle between the bonds BA and
CD in projection down the bond BC, and is given by

(ABx BC) - (BCx CD)

0S¢ = AB(BC)ICD sin0, sin6, ’

(AB x BC) x (BC x CD) [AB x BC - CD|BC
AB(BC)’CD sinf, sinf,  AB(BC)?(CD) sin#, sinf,

(BC/BC) sinw ==

where 0, and 0, are the angles ABC and BCD, respectively. 1f AB, BC, CD are unit vectors
n,, n,, n,, respectively, then

n E ’
sinw = L1 e Ml
sin @, sin 6,

The distance AD depends on the torsion angle @ as well as on the bond distances and bond
angles. For all bond distances equal to unity and all bond angles equal to 0

(AD)? = 3-4 cos0+ 2 cos?0— 2 sin?@ cosw
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lie on this axis; this follows from CE = BE and DE = AE in case that the tetrahedron
is non-planar, or from one of these equalities in case that the tetrahedron is planar —
in the latter case all five tetrahedra must be planar and must lie in a common plane
since any two such tetrahedra share three points in common. In either case the line MN
is a dyad axis of the pentagon which thus possesses five such dyad axes and must be
planar.

Figure 3

Another proof (by J. W.) is based on vector algebra. Let the directed edges of
the equilateral, isogonal pentagon with angle 6 be represented by unit vectors n,, n,,
n,, n,, n.. All possible triple scalar products formed by the five unit vectors involve
either consecutive vectors, such as [n,;, n,, n;] or non-consecutive vectors, such as
[n,, n,, n,]. The sign of a triple scalar product is, of course, reversed by changing the
order of any two vectors in the product. The torsion angle about any edge is given?)
by
(1,1, Ny, Ny

1

sinw,; =

sin26
and the sum of the torsion angles by
5 1 5
g;smwi = 5 iz:["i—l’ n,n,,.

=1

where the indices are understood to be modulo 5.

For brevity, we shall write products such as [n,, n,, ng] and [n,, n,, n,] simply
as [123] and [124] with 2[123], 2[124] for the corresponding sums over the cyclic
permutations (modulo 5). For the pentagon

14+2+3+4+ 5,2 3] =0=[123] 4 [423] + [523].
Rearrangement and cyclic permutation gives

[123] + [234] + [235] = 0
[234] + [345] + [341] = 0

.................

[512] + [123] + [124] = 0.
Summing,

25123+ Z[124] =0 .
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Similarly,

M1,1+2+3+4+5,3] =0=[123] + [143] + [153]
leading to

2[123) —22(124)=0.

Hence 2'[123] = X'[124] = 0 so that the sum of the torsion angles is zero. But the
individual torsion angles are equal in magnitude (from the equality of the 1,3-dia-
gonals, which are simultaneously 1,4-diagonals in the pentagon). Hence every torsion
angle must be zero and the pentagon is planar.

It is of interest that for a general, spatial pentagon, quantities of the form [123]
etc., but defined in terms of vectors representing the pentagonal sides rather than
unit vectors, still have the property that 2[123] and X[124] are zero; [123], [234],
etc., are again related to the corresponding torsion angles, but not as simply as in the
equilateral, isogonal case. For other spatial polygens similar relationships exist, e.g.
2 X[123] + 2[124] + X'[125] = 0 and 3 2[123] = 2 2[135] for the hexagon.

Finally, at a still more refined level of abstraction, is a proof by Oosterhoff [9]
based on matrix algebra, given here in slightly modified form.

Again let the directed edges of the equilateral, isogonal pentagon with angle ¢
be represented by unit vectors n,, n,, ny, n,, n,. From the ring-closure condition we
have

ﬂ1+n2+...+n5=0

from which we obtain five equations by successive scalar multiplication with n,,
s (Se = (M, 1)) = 5)

vy

() Syt St .o+ 55=0
(B)  Sar+Sppt+ A+ Sp=0
()  s;m+ + S5 =10

S

(9) Su1 + 845=10
() St Szt +S5=0.

The Matrix §

Su S12 - - Sis
S =
L 851 . . . 855 _
determines the linear dependence of the vectors n,, ..., n; and the planarity of the

pentagon follows if § can be shown to be of rank 2.
From the conditions imposed on the pentagon we have

Sk,k = 1

Sk.k+1 B COSQ? =a
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noting again that the cyclic structure implies that when 2 = 5, £ + 1 = 1 (modulo 5).
By appropriate adding and subtracting the five equations above we obtain also

For example, s,; is obtained from («) + (f) + (y) — (8) — (¢). (At this stage a geo-
metric proof can be based on the equality

Sik T Skat+1+ Sk rte = 1/2

from which it follows that the vector sum of any three consecutive sides projected
on the first of these sides bisects that side. The subsequent steps follow the lines of
the proofs discussed earlier. Oosterhoff prefers a more abstract approach).

We can now rewrite § explicitly in terms of its elements as

1 a b b a’] [ o, 0, 03 0, 05 ]
a 1 a b b s 0, Oy O3 Oy
S == b a 1 a b = 0'4 65 61 0'2 03
b b a 1 a O3 Oy O O Oy

| a b b a 1 | | 0, 03 04 05 0y

§ is seen to be a circulant matrix of order 5. It is a property of any circulant C
of order n that its determinant | C| can be expressed as a product of #» factors of the
form [10]

2 n-1
0’1_*—0'2(07""“0'3(1)1' + R +O'nw1

where wy(j =1, 2, ..., n) is one of the nth roots of unity, exp(2z¢ j/#). Thus in our
case
5 5 \
ISI=[] 2 oneoj ™"
i=1 k=1

The factor with 7 = 5 is zero because it is identical with the left side of («). Of the
remaining four factors those with j = 1 and § = 4 are complex conjugate, and simi-
larly those with § = 2 and j = 3. Therefore the rank of § is either 0, 2 or 4. It is cer-
tainly not O (e.g. s;; + 0) and it cannot be 4 since the vectors are three-dimensional.
Hence the rank of § is 2, which proves the theorem.

We remark that the 3 3 subdeterminants of |S| are identical with products
(and squares) of the quantities [123] etc. referred to earlier. For example, the 3 x 3
determinant of scalar products obtained by retaining rows 1, 3, 5 and columns 2, 3, 4
of | S| is equal to [135] [234], being a generalization of Gram’s determinant [11].

J. D. Dunitz, Ziirich®)
J. Waser, Pasadena?)

8) Organic Chemistry Laboratory, Swiss Federal Institute of Technology.
7) Gates and Crellin Laboratories of Chemistry, California Institute of Technology; Contri-
bution No. 4255.
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A New Method of Evaluating the Sums of
P (—1)k+tk-% p=1,2,3,... and Related Series

o0
The decisive tool in our attempt to evaluate the sumZ (—1)*+1 £—2¢ for fixed
=51

peN={1,2,3,...} is the kernel of Dirichlet in both of its representations
(for all real x)

=_;f+ D coskx (meN). (1)

k=1

sin(2n + 1)5
2 sin 5

D,(x) =

First of all, let us consider

n

Cp(k)=ft2f’cosktdt, ke N;

0

a twofold integration by parts gives the recursive formula

2
Gt = =2 (= 1)1 — (25— 1) G,y (B} (eN)
ColR) =0
and hence, as is immediately verified?),
. ' 4 1 2 —J) 1
Cp(k) = (—1)kn(2p)! ])g; (—1)7 @ —q) + 1) k¥ (peN). (2)

1)  Formula 3.529.1 in [4] is obviously incorrect.
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