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Kleine Mitteilungen

Functionals Close to Each Other

Bishop and Phelps [1] proved the fundamental theorem that every real or complex
Banach space is subreflexive, that is the functionals (real or complex) attaining their
suprema on the unit sphere of the space are dense in the dual space. (For an
extension see [2].) The proof is based on a very useful lemma of Phelps [3, 4], stating
an intuitively obvious fact. We shall give a completely elementary proof of this lemma.

Let E be a real normed space with unit ball B and dual E'. Suppose f, ge E',
Ifl = llgll =1 and j3(0) 0 B C gl [—e, &l (¢ < 1/2). Then |If — gll <2 or
If+¢ll <2e.

Proof. 1f f = 4 g there is nothing to prove. If not, choose a, b € E such that

fa)=g(b) =1 and /() =gla)=0.

Denote by M the plane spanned by @ and b. Put N = f~1(0) N g~1(0). Evidently E
is the direct sum of N and M. Denote by D the projection of B into M parallel to N.

Choosing D as the unit ball, define a norm || - || in M. Putting f, = f;y and
g0 = gm, Dy construction we have ||« fo + B gl = lla f 4+ B gll («, B €R), so we can
suppose that E is two-dimensional, D = B.

f~10) 0 B C g l{—e¢, &) implies ||b|| = &7}, i.e. B intersects the line determined
by b between —¢ b and ¢ b, say 0B intersects the line at — b, and b,.

Take two parallel lines through b, and — b, whosestripcontains B.As ||f||=|lg||=1,
the strip must contain either a + b or a — b. By symmetry one can suppose that it
contains a + b. But then B is contained in the striped region in the Figure.

a-b ays a+(1-n)b a+b

PP (P
g -7
,/ &

‘,,z"' / ! f-g=-1

i

: P/ ,«"“ﬂf
_a-b ‘4}/

: /_a b-3

Comparing this region with the lines f — g = 4 1, one sees immediately that
If—gll <max(n,A). Asnp <2cand A < 2¢/(1 + ¢), we have ||f —g| < 2e.
Remarks. 1. 1t is evident from the Figure that the result is best possible.
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2. The figure also shows that if f-1(0) N B C g™ {—¢, €] and g=1(0) " BC f1[—¢, €]
then || — gl < 2¢/(L+¢) or [If + gl < 2¢/(1 + ).

Béla Bollobas, Trinity College, Cambridge
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A Distribution Property of the Sequence of Lucas Numbers

Let {L,} (n=1,2,...) be the Lucas sequence: 1, 3, 4, 7, 11, ... . Then we have
the following lemmas:

Lemma 1. L divides L, ifandonlyifm = 2k —1)n;n > 1;k=1,2,... [1].

Lemma 2. If L  is divided by L,, m > #, then the remainder R is zero, or R is
a Lucas number, or L, — R is a Lucas number [2].

Lemma 3. Let p be a prime number > 2 and with the property that it divides
some Lucas number. Suppose that L,is the smallest Lucas number with L, =0 (mod ),
where ¢ is an integer > 1. Then there does not exist an L with Ly _;), < L, < Lgj 41
such that L, = 0 (modp).

Proof. By lemma 1 we have Ly, _,, = 0 (modp). Now suppose that there exists
an L, with Lg,_;y < L, < L4y, such that L =0 (modp). Let L, be divided
by L,, then, by lemma 2, the remainder R = 0 or R is a Lucas number or L, — R
is a Lucas number. But R = 0 is impossible according to lemma 1, for R = 0 implies
that L, divides L, which in its turn implies that ¢ must be an odd multiple of .
If R would be a Lucas number, then R = 0 (modp), for by the division algorithm
R= —aL,+ L,, where a is an integer, and L,, L, = 0 (modp). Now R < L, and
R = 0 (modp) yields a contradiction. Similarly, if L, — R would be a Lucas number,
then by the same argument we see that L, — R = 0 (modp) and L, — R < L, which
again yields a contradiction.

Definition. The sequence {x,} (» =1, 2, ...) of integers is said to be uniformly
distributed modm where m > 2 is an integer, provided that

1 1
i e ] TED e *
Jm . AN, m) = —, (*)

for eachj=0,1,...,m — 1, where A(N, §, m) is the number of x,, n=1,2,..., N,
that are congruent to § modm.
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Theorem 1. Let {L,} (»n=1,2,...) be the Lucas sequence. Then {L,} is not
uniformly distributed mod for any prime p > 2.

Proof. Let p be a prime >2. We distinguish two cases.

(1) If $ does not divide any Lucas number, then 4 (N, 0, $) = 0 which violates (*)
form =p and j = 0.

(2) Let p divide the Lucas number L,, where the index ¢ is the least possible.
Then by virtue of lemma 1 and lemma 3 $ divides all Ly,_y), (R=1,2,...) and no
other Lucas numbers. Consequently

N —v» N —7r
A(N,O,P)?—“ 21 or —*‘Zt—+1 (0 <7’<2t)
and therefore
1 1 r 1
Iim — A(N = 1 - = N .
o y AN.0,2) Nl—r>noo(2t 2Nt) 2; © 0T

But 2/iseven and thus =+ pif p > 2. Moreover, the Lucas numbers are not uniformly
distributed mod 2. This completes the proof.

Theorem 2. Let {L,} (»=1,2,...) be the Lucas sequence. Then {L,} is not
uniformly distributed modm for any composite integer m > 2.

Proof. If we assume that {L,} is uniformly distributed modm for some composite
integer m > 2, then {L,} would be uniformly distributed modp, where p is a prime
factor of m, according to theorem 5.1 of [3], which says that a sequence of integers
which is uniformly distributed modm, where m is composite, is also uniformly
distributed with respect to any positive divisor of m. This contradicts theorem 1.

Consequently, from theorem 1 and theorem 2 we have:

Theorem 3. The sequence of Lucas numbers is not uniformly distributed modm
for any integer m > 2.

L. Kuipers and Jau-Shyong Shiue, Southern Illinois University, USA
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Note on Arithmetical Progressions with Equal Products of Five Terms

It is not known if there exist two arithmetical progressions each formed by five
positive integers and such that the products of their terms are equal (cf. [2]). This
problem leads to the equation

@—27(@a—1na@+rn(@+2)=@>—2R) (b- Rb(d+R) (b+2R)
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or
a(a®—7%) (a®—47%) =0b (02— R?) (b2 — 4 R,

where we look for solutions in positive integers a, b, », R such that a — 27 > 0,
b—2R > 0.

We are giving here all solutions of this equation in integers in the case when
a = b, i.e. when the middle terms of our progressions are equal, and the progressions
consist of integers.

Theorem. All integer solutions of the equation

(a® — 7%) (a2 — 4 7%) = (a® — R?) (a® — 4 R?) (1)
are of the form :

a) a,r arbitrary integers, R = 47,

b) r=4+w+4uv—1v%)9, R=Q2u?—2uv—2v%p, a=2 (u?+ v?p,

c) r=4+2u?—2uv—2v¥p, R=(u?+4uv— 1?9, a=2u?+ v?p,
where u, v, g are integers.

Proof. The equation (1) can be written as

4 (r* — RY) =54 (r— R?).
On excluding the case a), we get

4 (r*4+ R?) =5a?.
Now a=2 A, and

P+ R*=15 A2. (2)
All integer solutions of this equation are well-known (cf. [1], p. 48, Ex. 1) :

r=+4+po, R=qp,A=spand r=+4qp, R=pp, A=5s9p

where p=u?2+4uv—12, ¢g=2u%— 2uv— 2% s = u® 4 v* and u, v, p are integers.
Putting here a = 2 4 we obtain solutions b) and c¢) and the Theorem is proved.

Remark. It may be easily seen that the equation (1) has no solutions giving
arithmetical progressions with positive terms. In fact, assume R >7 >0 and
a—2R>0.Then2A ~-2R=a—-2R>0,A>Randr®+ R? <2 R? <5 R?
contrary to (2). Thusif R >~ > 0,thena—-2 R <0.

K. Szymiczek, Katowice, Poland
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Nichtnegative Matrizen mit konstanter Zeilensumme

Mit M ,(R) bezeichnen wir die Menge der quadratischen Matrizen der Ordnung #»
iiber dem Korper R der reellen Zahlen.

Eine Matrix 4 = (ay,) € M ,(R) heisst nichtnegativ, wenn jedes ihrer Elemente
nichtnegativ ist. Bekannt ist der folgende

Satz: Die Matrix A sei nichinegativ und
”
0<2ak,=rfﬁrk=1,2,...,n. (1)
=1

So gilt a(r): A hat den Eigenwert v, b(r): alle Eigenwerte sind dem Betrage nach nicht

grosser als v, und c(r): Eigenwerten mit dem Betrage v entsprechen lineare Elementar-
teiler.

Diesen Satz erhdlt man z. B. aus einer entsprechenden Aussage iiber stochastische
Matrizen (s. etwa GANTMACHER [1], S. 721f.). Der Beweis kann aber besonders einfach
gefiihrt werden, wenn man den folgenden Satz aus der Theorie der Differenzen-
gleichungen als bekannt voraussetzt (s. HAuN [2], S. 52):

Die Nullosung des Systems Unearer Differenzengleichungen wmit Ronstanten
Koeffizienten

% (t+ 1) = B x(f) (2)
1st genau dann stabil, wenn fiir B die Aussagen b(1) und c(1) gelten.

Dabei heisst die Nullosung des Systems (2) stabsl, wenn sich zu jedem positiven ¢
ein positives d finden ldsst, so dass |x(0) | <o

lx(6) | <e, t=1,2,...,

nach sich zieht. |- | bedeutet hier eine beliebige Vektornorm. Wir zeigen, dass die
Nullosung von (2) stabil ist, wenn 4 = r B nichtnegativ ist und (1) erfiillt.
Setzen wir |x|= max|x;| und bezeichnet Z(4) die zu dieser Vektornorm

passende Zeilennorm von A (s. etwa ZurMUHL [3], S. 2021f.), so ist

5+ 1)< Z(B) Ix()] = 7150 = %),
und daher
HOL< 12O0)], t=12, .,

wie behauptet.
Also gelten die Aussagen b(1) und c(1) fiir B, und daher b(r) und c(») fiir 4.
a(r) folgt daraus, dass A den Eigenvektor col(1, 1, ..., 1) hat.

H. Stettner, TH Graz
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