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Wegen (3) folgt

f(x)of(y) f(f(x)*f(y)).
Andererseits gilt nach (1)

f(x)of(y) f(x*y).
Daraus folgt (2). Das ergibt den

Satz. In einem Verknüpfungsgebilde (A, *) lässt sich jede Kongruenzrelation
darstellen durch eine Abbildung / von A in sich mit

/(/(*) */(y)) /(**y),
und zu jeder Abbildung dieser Art gehört eine Kongruenzrelation von A.

Bei unseren Überlegungen konnten wir die Schlüsse ziehen:
Aus (2) folgt (1) und aus (1) und (3) folgt (2). Es fragt sich nun, ob umgekehrt aus (2)
schon (3) folgt. Das ist aber nicht der Fall, Gegenbeispiel: A ={0,1}, 0*0 0

1*1, 1*0=1 0*1, /(0) 1, /(l) 0. (2) ist erfüllt; (3) ist verletzt, denn

/(/(0))=/(l)*/(0).
Hans-Joachim Vollrath, PH Würzburg

Elementarmathematik und Didaktik

Zugehörigkeitstafeln und charakteristische Funktionen

Man wundert sich immer wieder, dass sich die Didaktiker im Zeitalter der Mengen-
Mathematik nur zaghaft an die Aufgabe heranmachen, Beweisverfahren für die Grundgesetze

der Mengenalgebra zu entwickeln, die auch im Schulunterricht traktabel sind.
Bei der Mehrzahl der in neuerer Zeit erschienenen Unterrichtswerke besteht die
Verankerung der Mengenalgebra in der Veranschaulichung dieser Gesetze an Venn-
Diagrammen. Autoren mit einem besser ausgebildeten mathematischen Gewissen
weisen noch darauf hin, dass die Grundgesetze der Mengenalgebra auf die Regeln der
Aussagen-Logik zurückgeführt werden können. In seltenen Fällen wird die Abstützung
auf die Aussagen-Logik ausführlich dargelegt, aber diese wird dann fast ausnahmslos
mit einem Feuerwerk in formaler Logik erkauft. Von der unterrichtlichen Situation
her sind solche Beweisverfahren vorzuziehen, bei denen die Aussagen-Logik nur
implizit verwendet wird. Die bisherigen Erfahrungen zeigen nämlich mit aller
Deutlichkeit, dass bei einer Behandlung der Aussagen-Logik im Schulunterricht mehr
Zeit damit vertan wird, um über die Mathematik zu reden, statt Mathematik zu
treiben.
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Zur Zurückführung der Grundgesetze der Mengenalgebra auf möglichst evidente
Tatbestände stehen verschiedene Wege offen, bei denen die Aussagen-Logik nur
implizit benutzt wird. In didaktischer Sicht dürfte das Beweisverfahren mit
Zugehörigkeitstafeln im Vordergrund stehen, das eigenartigerweise in der Schule noch recht
wenig bekannt ist. Es soll hier kurz dargelegt und auf seine Tragweite hin untersucht
werden. A. Kirsch hat unlängst gezeigt1), dass geeignete Venn-Diagramme bei
vorsichtiger Interpretation dasselbe leisten können. Aber die unumgängliche Gebrauchsanweisung

für die Venn-Diagramme, die vom Lehrer und von den Schülern eingehalten
werden muss, dürfte die Beweiskraft dieses Verfahrens doch etwas herabmindern.
Ein Venn-Diagramm weckt zu stark die Vorstellung gewisser Mächtigkeiten und
gerade dies muss dort ferngehalten werden.

1. Das Beweisverfahren mit Zugehörigkeitstafeln

Die Grundoperationen der Mengenalgebra sind Vereinigung, Durchschnitt und
Komplementbildung in bezug auf eine vorgegebene Universalmenge U. Will man die
diesbezüglichen Rechenregeln beweisen, so kann man bei der Definition der Mengen-
Operationen anknüpfen. Man hat dann die Zeichen y, O und ~ jeweils in ODER,
UND und NICHT umzudeuten und anschliessend die Identität der links und rechts
vom Gleichheitszeichen stehenden Mengen nachzuweisen. Bei den Kommutativ- und
Assoziativ-Gesetzen geht dies mühelos, aber bei andern Gesetzen verlangt dieses

Verfahren einige Überlegung. Solche Beweise lassen sich viel einfacher führen, wenn
man sie schematisiert.

Das Beweisverfahren mit Zugehörigkeitstafeln beruht auf dem folgenden
Gedanken. Sind A und B zwei beliebige Mengen, dann liegt für jedes Element x in einer
geeignet gewählten Universalmenge einer der folgenden vier Fälle vor:

x $ A und x $ B
x $ A und x g B
xeA und x <fc B
xeA und xeB

Wir halten nun diese vier Fälle in einer Zugehörigkeitstafel fest, in der wir das
Enthaltensein durch die Zahl 1, das Nichtenthaltensein durch die Zahl 0 zum Ausdruck
bringen:

A B AkjB A DB
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1 Tafel I

Ein Element x von U ist genau dann in der Menge A \j B enthalten, wenn es in
mindestens einer der Mengen A oder B liegt. In der Kolonne von A u B ist also überall
dort eine 1 zu schreiben, wo in der Kolonne von A oder in der Kolonne von B eine 1

steht; dies trifft für die drei letzten Zeilen zu. Mit einer entsprechenden Überlegung

*) Vgl. [3]



136 Elementarmathematik und Didaktik

kann man die Werteverteilung in der Kolonne von AHB erhalten, x ist Element
von AHB, wenn es zugleich in A und in B enthalten ist. In der Kolonne von AHB
steht also genau dann eine 1, wenn in den Kolonnen von A und von B zugleich eine 1

steht. Diese Situation liegt in der vierten Zeile vor.
In der Kolonne von A\jB steht nun offenbar das Maximum, in der Kolonne von

AHB das Minimum aus den beiden Zahlen in den Kolonnen von A und von B.
Für eine Menge A und deren Komplement A bestehen die Implikationen

x $ A => xeA und xeA => xeA

was zur Tafel

A A

0
1

1

0 Tafel II
Anlass gibt.

Aus den Zugehörigkeitstafeln für Vereinigung, Durchschnitt und Komplement
kann man nun die Zugehörigkeitstafel für jede Menge konstruieren, die mit den

Operationen y, O und - aus irgendwelchen Mengen A, B, C, gebildet ist. Darauf
beruht das Beweisverfahren mit Zugehörigkeitstafeln.

Als erstes Beispiel beweisen wir das Verschmelzungs-Gesetz A O (A y B) A.

A B AÖB A n (A u B)

0 0 0 0
0 1 1 0
1 0 1 1

1 1 1 1

Zwei Mengen sind offenbar gleich, wenn in den entsprechenden Kolonnen der
Zugehörigkeitstafel dieselben Werteverteilungen auftreten. Dies trifft hier für die
erste und vierte Kolonne zu, so dass also

A n (A y B) A

Der Beweis der de Morgan-Regel A y B A O B wird mit der folgenden
Zugehörigkeitstafel geleistet:

A B AuB AuB A B AHB
0 0 0 1 1 1 1

0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 ü 0 0 0

Schliesslich sei noch ein Rechen-Gesetz mit drei freien Mengen verifiziert. Wir
wählen als Beispiel das Distributiv-Gesetz A y (B O C) — (A y JE?) O (A y C). Die
Zugehörigkeitstafel umfasst jetzt 8 Zeilen, da in bezug auf jede der drei Mengen die
Werte 0 oder 1 möglich sind.
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A B c BnC Au(BnC) AuB AuC (AuB)n(Au C)

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

Hier stimmen die Werteverteilungen in der fünften und letzten Kolonne uberem
und dies beweist das vorliegende Distnbutiv-Gesetz

Man kann mit diesem kombinatorischen Beweisverfahren muhelos sämtliche
Gesetze der Mengenalgebra bestätigen

2 Charakteristische Funktionen

In der didaktischen Literatur wird in den Zugehörigkeitstafein das Enthaltensem
meist durch das Zeichen e, das Nichtcnthaltcnsem durch das Zeichen $ angezeigt
Verwendet man dafür die Zahlen 1 und 0, dann schafft man sich zugleich eme Aus-
gangsbasis fur em interessantes Feld von weitei fuhrenden Zusammenhangen

Wir denken uns fur die folgenden Betrachtungen weiterhin eme geeignete
Universalmenge U ausgezeichnet, alle vorkommenden Mengen A, B, C, smd

Teilmengen von U

Definition: Ist A C U, dann heisst die Funktion fA mit

wenn xeA
0 wenn x$A,dh xeA/_w-{ J

die charakteristische Funktion zu A auf der Menge U
Auf Grund der Definitionen von Vereinigung, Durchschnitt und Komplement

schliesst man sofort auf die folgenden Beziehungen

mm{fA{x),i„(x)) fA{x) fr(x)

/„(*) /„(*)=/„(*)
ma.x(fA(x), fB(x)) - fA(x) + fB(x) -

/iM 1 /,(*)

1 ernu besteht die Äquivalenz

A — B -*-=*• fA(x) fB(x) fur alle xeU

tArsA^)

Iakjb^) /„(*) /_(*)

(1)

(2)

(3)

(4)

(5)

Die Mengen A und B smd also genau dann gleich, wenn die charakteristischen
Funktionen fA und fB übereinstimmen

Es hegt nun auf der Hand, die Zugehörigkeitstafein I und II als Verknüpfungs-
tafeln für fA\jB{x)> fAr\n(x) und fl(x) aufzufassen Das Beweisverfahren mit Zuge-
hongkeitstafeln beruht dann offenbar auf der Äquivalenz (5)
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Die drei Beweise, die zuvor mit Hilfe von Zugehörigkeitstafeln bewältigt wurden,
nehmen in der Sprache der charakteristischen Funktionen folgende Gestalt an.

Beweis des Verschmelzungs-Gesetzes: für alle x eU gilt

tAf\{A\jB>{*) Ux) (Ux) + /*(*) " Ux) ' /*(*))

Ux) + Ux) • fB(*) - Ux) • /*(*) fA(*)

Beweis der de Morgan-Regel: für alle x e U gilt

ta(*) 1 - fAvßi*) 1 ~ (Ux) + fB(*) - Ux) ' Ux))

(l~fA(x))(l-fB(x))^fA(x)-fB(x)
Beweis des Distributiv-Gesetzes: für alle x e U ist

f(AKjmfMAKjC)(x) (/_iM + fB(x) - fA(x) ' fB(x)) (/» + fc(x) - fA(x) • fc(x))

UX) + fß(x) • fC(X) - Ia(x) ' UX) ' fC(X) /_4v(BAC)(*)

Bekanntlich kann die Teilmengen-Relation auf Vereinigung, Durchschnitt und
Komplementbildung zurückgeführt werden. Insbesondere bestehen die Äquivalenzen

ACB<=^AnB A^=>AuB B^AnB AuB=U. (6)

Dies kann man ebenfalls mit Zugehörigkeitstafeln beweisen. Hier sei der Beweis
unter Verwendung charakteristischer Funktionen durchgeführt. Man benötigt dazu
die Äquivalenz

A C B <==> fA(x) < fB(x) für alle x e U (7)

Ganz gleichgültig, ob man die linke oder die rechte Seite voraussetzt, sind nämlich
nur die in der folgenden Tafel aufgeführten Werteverteilungen möglich, und man
schliesst daraus, dass in beiden Fällen auf der andern Seite des Äquivalenzzeichens
eine richtige Aussage steht.

Es ist nun

Ux) < /*(*)

Ux) fß(x)

0 0

0 1

1 1

min(fA(x), fB(x)) fA(x)

/_mß(*) Ux)

mzx(fA(x), fB(x)) fB(x)

fAKJß(X) fß(x)

und weiter

Ux) * fB(x)

Ux) * fB(x

Ux) <==> Ux) (1 - fB(x)) 0 ^ fA(x) ' fs(x) - f0(x)

fA(x) <*+ (1 - fA(x)) + fB(x) - (1 - fA(x)) fB{x) 1

^ f2vß(x) /c/W

Die einzelnen Aussagen gelten durchgehend für alle x e JJ.
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Auf Grund von (7) zeigt man ebenfalls mühelos, dass die Teilmengen-Relation
eine Halbordnung darstellt; sie ist reflexiv, identitiv und transitiv.

3. Charakteristische Funktionen in der Kombinatorik

Mit den charakteristischen Funktionen bietet sich ein elementarer Zugang zu
einem wichtigen Abzählverfahren in der modernen Kombinatorik an, das als Prinzip
des Ein- und Ausschaltens bekannt ist.

Setzt man eine endliche Universalmenge U voraus, dann ist

JTfA*) t*(A) (8)
xeU

die Mächtigkeit der Menge A. Die Summe ist über alle Elemente x von U zu erstrecken.
Aus der Beziehung (3)

Ia^a^x) fAl(x) + /_*,(*) - fAt(x) ' /_*,(*)

entnimmt man auf Grund von (8) die folgende Beziehung für die Mächtigkeiten

fi(A1 u A2) //(_4i) + ^(_42) - f,(A1 n A2) (9)

Die Formel (9) kann nun leicht auf n Teilmengen von U erweitert werden.
Zunächst ist

Ja^AiV \jAn\x) fl1r\lar\...r\An(x) 1 — rÄxr\Atr\ r\Än\x)

1 - (1 - fAi(x)) (1 - fAi(x)) (1 - fAn{x))

=2*4*) -ZiA,w f4x) +Z f4x^ /_,(*) /_»(*) - • • ¦

*=i %<i i<j<k
+ (- l)"-1 fA(x) fAi(x) fAJx) (10)

Die zweite Summe läuft über alle Zweier-Kombinationen ohne Wiederholungen aus
den Indizes 1,2,..., n, d.h. über alle Paare (i, ]) mit i < j. Bei der dritten Summe geht
es um die Dreier-Kombinationen ohne Wiederholungen; dies sind die Tripel (i, j, k)
mit i < / < k. Die folgenden Summen sind analog gebildet.

Summiert man nun über alle Elemente von U, dann wird man auf die Beziehung

^iy_42y...y^J=2;MA)-2;^Kn^)+i7MA,n^n^
ki %<i<k

-... + (-l)»-1 (A1nA2n...nAn) (11)

geführt. Dies ist die sogenannte Ein- und Ausschaltformel, mit der eine Reihe von
interessanten Problemen aus der abzählenden Kombinatorik bewältigt werden
kann. Für Anwendungsbeispiele muss auf [1], [2] und [4] verwiesen werden.

In den Anwendungen begegnet man der Ein- und Ausschaltformel häufig auch
in der Gestalt

/*(Ä1nItn...nÄn)
/*(U) -2>K) +2>(^.n4) -2>(^.n4 nAk) + • • • (12)

ki i<i<k
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die aus

/_^_.a *_„(*) (1 - /_,(*)) (1 - /_.(*)) •••(!- /_.(*))

hervorgeht.
Man kann ebenso leicht auch für andere Voll-Konjunktionen2) aus n Mengen die

charakteristischen Funktionen und die Mächtigkeiten bestimmen. So ist etwa

/_,a_.a_.a3.(*) M*) /*(*) (1 - /*(*)) (1 - /_.(*))

/_,(*) /_,(*) - /„,(*) /_,(*) /„,(*) - /„,(*) /_,(*) /„.(*) + /„,(*) /_,(*) /_,(*) /_.(*)

und damit

]Lt(A1nA2nÄ3nÄt)

/^ n _42) - iu(A1 n _42 n _43) - fi(A1 n _42 n ,44) + //(_4i n _42 n _43 n 44)

Man kann die letzte Beziehung als Sonderfall der Formel (12) auffassen mit
U' Ax O _42 und den beiden Teilmengen _4^ At O _42 D _43 und A'2 Atn A2n _44.

Auf diese Weise kann man zu interessanten Verallgemeinerungen der Ein- und
Ausschaltformel gelangen.

Eine andere Verallgemeinerung besteht darin, dass man den Elementen von U
Gewichte beilegt. Es sei dem Element x e U die reelle Zahl w(x) als Gewicht
zugeordnet. Ferner sei

«>(_i)=2X*)k(*) <13)
xeU

co(A) ist die Summe der Gewichte aller Elemente von A. Man erhält nun

o)(A1uA2) =2Jw(x) fAxyjA%(x)
xeU

=2>(«) /_» +2>w /_.(*) -2>(*) /_,(*) /_»
*e£7 xeU xeU

- co(_4!) f- o>(^2) - co^! O _42) (14)

Dies ist die kennzeichnende Beziehung für eine sogenannte additive Funktion auf der
Potenzmenge von U.

Die Beziehung (10) gibt nun sofort Anlass zur folgenden Verallgemeinerung der
Ein- und Ausschaltformel:

m(AtnA2n. n_4J =2>M -2>(A°4) +2>(^.n4 nAk) - • • •

f( l)»-1a>(A1nA2n...nAH)

Ist _#(#) •= 1 für alle x e 17, so erhält man die Mächtigkeit. Ein anderes Beispiel
ist die Wahrscheinlichkeit über einem endlichen Stichprobenraum. Dort ist

0 < w(x) < 1 und 2Jw(x) 1.
xeU

2) Unter emer Voll-Konjunktion aus n Mengen *AV A2, An versteht man einen
Durchschnitt von der Gestalt _
XtnX2n .f)Xn mit Xf ~ A^ oder A]
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Die voranstehenden Bemerkungen möchten einige Anregungen für die Schulpraxis

vermitteln. Der Autor möchte damit insbesondere auch darlegen, dass die
Modernisierung des Mathematik-Unterrichtes nicht aus einem Strohfeuer in Mengenalgebra

bestehen muss. Eme Akzentuierung des Mengenbegriffs im Unterricht hat
überhaupt erst dann einen Sinn, wenn damit echte Probleme angegangen werden.

M. Jeger, Luzern
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Eine Klasse von Abzählproblemen

In der vorliegenden Note stehen alle Unbestimmten für natürliche Zahlen, und
es bedeutet p immer eine Primzahl.

Es geht um die folgenden vier Probleme:
Gegeben ist eine Zahl n,

1. Wieviele Zahlen x gibt es, so dass n + x \nx?
2. Wieviele Zahlen x < n gibt es, so dass n — x \nx?
3. Wieviele Zahlen x > ngibt es, so dassx — n \ xn?
4. Wieviele ungeordnete Zahlenpaare (v, w) gibt es mit dem kgV n

Die Anzahlen der Lösungen des ersten, zweiten, dritten, vierten Problems seien in
dieser Reihenfolge mit A(n), B(n), C(n), D(n) bezeichnet.

1. Einleitung zum ersten Problem

In [2] findet sich die Aufgabe, alle Paare (n, m) natürlicher Zahlen zu bestimmen,
deren Summe Teiler ihres Produktes ist. Es soll also gelten:

n + m \ nm

Zur Herleitung der Lösung stellen wir zunächst fest, dass Summe und Produkt
zweier teilerfremder Zahlen wieder teilerfremd sind. Ist t der ggT von n und m, und
(n, m) (ta, tb), so lautet die zu erfüllende Bedingung:

t(a -f- b) \t2ab und damit a + b \ tab
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